visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-13 16:00 
일시 May. 13 (Fri.), 04:00 PM 
장소 자연과학동(E6-2) 1st fl. #1323 
연사 Dr. Yosep Kim(Center for Quantum Information, KIST) 

SRC Seminar

 

 

High-fidelity iToffoli gate for fixed-frequency superconducting qubits

 

Dr. Yosep Kim

Center for Quantum Information, KIST

 

May. 13 (Fri.), 04:00 PM

E6-2. 1st fl. #1323

 

 

 

 

 

Abstract:

The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. In this talk, I explain how to implement a high-fidelity iToffoli gate for fixed-frequency superconducting qubits. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate can be implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, I numerically show that this gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. This work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.

 

 

 

 Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
» 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
368 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
367 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
366 2022-05-11 16:00  E6-2. #1323 & Zoom  Gravity as a phenomenon in quantum dynamics
365 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
364 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
363 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
362 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
361 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
360 2022-04-15 11:00  Online seminar  (응집물리 세미나) First-principles studies of polar oxides and their applications file
359 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
358 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
357 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
356 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
355 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
354 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
353 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
352 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
351 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
350 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands