visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-12-09 10:00 
일시 Dec.9(Wed), 10:00AM 
장소 Zoom 
연사 Prof. Andrew Geraci (Northwestern University) 

Topic: Searching for the QCD axion with the ARIADNE experiment

 

Speaker: Prof. Andrew Geraci (Northwestern University)

 

Date: December 9, 2020 (Wednesday)

 

Time: 10:00 AM

 

Venue: Zoom Video Conference Seminar (Click the link below)

 

https://kaist.zoom.us/j/84076947660?pwd=a3NUQVZYOXVpbGZJUjZ5NDhrMEpHdz09

 

(Meeting ID: 840 7694 7660; Passcode: 523366)

 

 

Abstract 

 

The QCD axion is a particle postulated to exist to explain the lack of Charge-Parity (CP) violation in the strong

interactions, and the associated unexpected smallness of the neutron electric dipole moment. It also happens

that the axion could constitute all or part of the Dark matter in the universe, thus making it an “economical”

solution to some of the greatest puzzles in cosmology and high-energy physics. While the focus in the

community has mainly been on cosmic axion searches, axions can also generate novel spin-dependent

short-range forces between nuclei in table-top experiments. The Axion Resonant InterAction Detection

Experiment (ARIADNE) is a collaborative effort to search for the QCD axion, using a technique based on nuclear magnetic resonance. The aim is to detect axion-mediated short-range interactions between laser-polarized

3He nuclei and an unpolarized tungsten source mass. The experiment has the potential to probe deep within the

theoretically interesting regime for the QCD axion in the mass range of 0.01-10 meV.  In this talk I will discuss the basic principle of the experiment and the current experimental status. 

 

CAPP Official YouTube Channel:

https://www.youtube.com/channel/UCt0PU7dgdRoXo0C3478EImw?view_as=subscriber

 

세미나 포스터_Geraci.jpg

 

번호 날짜 장소 제목
126 2017-04-27 16:00  Seminar Room(#1323, E6-2)  반도체 양자점을 이용한 단광자 광원
125 2017-04-06 16:00  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  For whom the Belle tolls
124 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
121 2017-03-21 16:00  Seminar Room 1323  Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00  Seminar Room 1501  Spring 2017: Physics Colloquium file
119 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
117 2017-01-09 16:00  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions" file
116 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
114 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
111 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
110 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
109 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
107 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus