visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-14 16:00 
일시 4pm, 14th April 
장소 E6 1323 
연사 신승우 (KAIST 물리학과) 
Title: Holographic tomography of dielectric tensors at optical frequency
 
Speaker: 신승우 (KAIST 물리학과)
 
Date: 4pm, 14th April
 
Place: E6 1323 (Available seats can be limited because of the COVID situation.)
 
Abstract
Ranging from material science to soft matter physics, liquid-crystal displays, and tissue biology, three-dimensional (3D) optically anisotropic structures have been investigated for versatile purposes in various research areas. However, conventional methods indirectly access information of 3D anisotropic structure, due to the lack of direct imaging modality for 3D anisotropy.
 
Optical diffraction tomography (ODT) techniques have been successfully demonstrated in reconstructing 3D refractive index (RI) distribution for various research areas. However, applications of the techniques have been restricted to optically isotropic objects, due to the scalar wave assumption in the ODT principles. This assumption severely limits broader applications of the ODT techniques to optically anisotropic objects, particularly for liquid crystalline materials and filament structures in biological cells.
 
Here, we present dielectric tensor tomography as a label-free modality for reconstructing 3D dielectric tensors of anisotropic structures. Dielectric tensor, a physical descriptor for vectorial light-matter interaction, serves intrinsic information of optical anisotropy including principal refractive indices and optic axes. By measuring diffracted electric fields and inversely solving a vectorial wave equation, the present method offers 3D distributions of dielectric tensors, principal RIs, and optic axes of anisotropic structures. The feasibility of the present method is validated by numerical simulations and experimental results. We demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast 3D nonequilibrium dynamics.
번호 날짜 장소 제목
107 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
106 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
105 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
104 2024-04-11 16:00  E6-2, Rm#1323  Theoretical Studies of the Electric Field Induced Thermal Hall Effect in the Quantum Dimer Magnets XCuCl3 (X = Tl, K)
103 2019-08-19 10:00  Rm. 1322, E6-2  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
102 2021-07-29 14:00  Online seminar  Gravitationally Induced Dark Sector and Inflationary Dynamics file
101 2021-05-27 16:00  온라인  찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
100 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
99 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
98 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
97 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
96 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
95 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
94 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
93 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
92 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
91 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
90 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
» 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
88 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics