Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo
2022.01.14 17:51
장소 | KI bldg. 5th fl. Room B501 & Zoom |
---|---|
일시 | Jan. 18(Tue), 2pm-3pm |
연사 | YoungJu Jo (Stanford University) |
[Seminar]
18 Jan 2022, Tue, 2pm-3pm, KI bldg. 5th fl. Room B501
Zoom: https://kaist.zoom.us/j/89586032430
회의 ID: 895 860 324 30
Data-driven interrogation of biological dynamics:
from subcellular interactions to neuronal networks in vivo
YoungJu Jo
PhD Candidate in Applied Physics, Deisseroth Laboratory, Stanford University
Biological systems are nonlinear dynamical systems consisting of heterogeneous entities. Understanding the logic of the complex spatiotemporal dynamics in such systems, robustly implementing specific biological functions, may require new approaches beyond the traditional hypothesis-driven experimental designs. Here we present a data-driven approach, enabled by high-throughput experimental and computational technologies, across multiple scales. We first discuss a computational imaging technique for simultaneously visualizing multiple aspects of subcellular dynamics [1, 2], its potential combination with molecular optogenetics to study the cell signaling networks, and the remaining challenges in these systems. Then we turn to neuronal networks in behaving animals where high-dimensional neural population activity could be reliably measured and perturbed over extended time. Synergizing with recent technical advances, we propose and experimentally demonstrate a unified deep learning framework to identify the underlying neural dynamical systems, reverse-engineer the neural computation implemented by the dynamics, and design spatiotemporally patterned optogenetic stimulation for naturalistic manipulation of animal behavior [3]. Application of this framework to the mouse habenular circuitry reveals cell-type-specific reward history coding implemented by line attractor dynamics [4].
References:
1. Jo*, Park* et al. Science Advances 3(8), e1700606, 2017.
2. Jo*, Cho*, Park* et al. Nature Cell Biology 23, 1329–1337, 2021.
3. Jo et al. in preparation.
4. Sylwestrak*, Vesuna*, Jo* et al. in revision.
문의: 박용근 교수 (내선:2514)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
140 | Mar. 2nd (Thu), 4:00 p.m | #1323(E6-2. 1st fl.) | Dr. Jonathan Denlinger, Lawrence Berkeley National Lab | “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems” |
139 | Mar25(Thur), 04:00PM | Online Seminar (Zoom) | Prof. Atsushi Tokiyasu (Tohoku Univ.) |
Search for dark matter axion with Rydberg atoms
![]() |
138 | March 18(Fri.) 11:00 | Online seminar | Dr. Dirk Wulferding (IBS-Center for Correlated Electron Systems, Seoul National University, Seoul) |
(응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids
![]() |
137 | May 20(Fri.) 11:00 | E6-1 #1323 | Prof. Kwanpyo Kim (Department of Physics, Yonsei University) | (응집물리 세미나) Exploration of new polymorphs in van der Waals crystals |
136 | May 1 (Wed), 4:00 PM | #1323, E6-2 | Dr. Sungkyun Choi |
Raman and x-ray scattering study on correlated electron systems: two case examples
![]() |
135 | May 11 (Wed.), 4 PM | E6-2. #1323(1st fl.) | Dr. Bumjoon Kim, Max Planck Institute for Solid State Research | The quest for novel high-temperature superconductors---Prospects and progress in iridates |
134 | May 13 (Fri.) 4 PM | E6. #1501(1st fl.) | Dr. Hosub Jin, Dept. of Physics, UNIST | Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics |
133 | May 13 (Fri.), 1:30 PM | E6. #1501(1st fl.) | Dr. Young-Woo Son, Dept. of Physics, KIAS | Aperiodic crystals in low dimensions |
132 | May 16, 2016 (Mon) 4PM | #1323(E6-2, 1st Fl.) | Dr. Daniel Bowring , Fermi National Accelerator Laboratory | Tuning microwave cavities with biased nonlinear dielectrics for axion searches |
131 | May 19 (Thu) 4PM | #1323(E6-2, 1st fl.) | Dr. Heedeuk Shin, POSTECH | Nonlinear/quantum optical effect in silicon nano-photonics |
130 | May 19, 2016 (Thur.) 3PM | May 19, 2016 (Thur.) 3PM, | Dr. Michael Betz, CERN | The CERN Resonant WISP Search: Development, Results and Lesson-Learned |
129 | May 2 (Thu.), 4:00 PM | #1323, E6-2 | Prof. Joon Ik Jang |
Anomalous optical properties of halide perovskites
![]() |
128 | May 21 (Tue.), 4:00 PM | #5318, E6-2 | 임준원 박사 |
Classification of flat bands according to the band-crossing singularity of Bloch wave functions
![]() |
127 | May 24 (Fri.), 16:00 PM | #1323, E6-2 | Prof. Soonjae Moon |
Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates
![]() |
126 | May 24 (Tue) 4 PM | E6-2. #1323(1st fl.) | Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University | Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density |
125 | May 27,(Fri), 11:00 AM | Online seminar | Prof. Gray Rybka(University of Washington) |
Current Status and Future Plans of ADMX
![]() |
124 | May 29 (Tue.), 04:00 PM | #1323, E6-2 | Prof. Jae-Won Jang |
Investigation on metal nanostructure/semiconductor junction and its applications
![]() |
123 | May 30 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Chang-Hee Cho |
Tuning the excitonic properties of semiconductors with light-matter interactions
![]() |
122 | May 31 (Fri.), 11:00 AM | #1323, E6-2 | Prof. Guido Burkard |
Cavity QED with Spin Qubits
![]() |
121 | May 31 (Tue.) 4 PM | #1323(E6-2, 1st fl.) | Dr. Kimin Kim, KAIST | Understanding 3D tokamak physics towards advanced control of toroidal plasma |