visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
407 2023-07-12 11:00  E6-2, #1323  Study of spin-1/2 antiferromagnetic kagome Heisenberg model by symmetric projected entangled simplex states
406 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
405 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
404 2023-12-08 10:30  E6-2, Rm#2502  Novel transport phenomena in insulators
403 2017-11-08 13:00  #5318 (E6-2. 5th fl.)  “Emergent exotic quasiparticles in quantum spin liquids” file
402 2020-09-22 09:30  Zoom webinar  Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
401 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
400 2020-10-09 09:00  https://kaist.zoom.us/j/85161896513?pwd=U3pwWFFZaWVRamxDZUR5REhNeVk0UT09  Quantum Many-Body Simulation file
399 2023-11-08 10:00  E6-2,#2502 & zoom  [High Energy Theory seminar] The Vacuum Sector of Asymptotically Isometric Codes
398 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
397 2023-05-17 16:30  Zoom  Detecting Hidden Photon Dark Matter via the Excitation of Qubits file
396 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions
395 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
394 2021-02-17 09:00  Online  석학 대중 강연 및 강의 시리즈 file
393 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
392 2023-11-22 10:00  E6-2, #5301 & zoom  [High Energy Theory Seminar] Exact Quantum Algorithms to Recognize Quantum Phases of Matter
391 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
390 2023-06-16 13:00  E6-2, #2502  Quantum critical states under extreme conditions
389 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
388 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file