visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-11-15 16:00 
연사  
장소 E6-6, #119 
물리학과에서는 아래와 같이 세미나를 개최하고자 하오니, 
관심있는 분들의 많은 참석 부탁드립니다.
 
Date: 16:00~18:00 PM, 15th Nov (Wed)
 
Place: E6-6, #119호
 
Speaker: Prof. Cristian Ciraci(Istituto Italiano di Tecnologia (IIT))
 
Title: Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
 
Abstract: 

Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. Nano-gap plasmonic systems – in which two or more metallic nanoparticles are separated only few nanometers from each other by an insulating spacer – have been predicted to produce enormous field enhancements (as much as thousands of times that of the incident radiation). For the narrowest (< 1 nm) gaps, light can be so tightly confined that the nonlocality associated with the dielectric response of the metal and quantum effects can have a strong impact on the scattering properties of the system, placing strict bounds on the ultimate field enhancement [1]. A reliable way to theoretically describe and numerically model optical properties of plasmonic nanostructures with different length scales requires methods beyond classical electromagnetism. In this context, it becomes very important to develop simulation techniques to take into account quantum microscopic features at the scale of billions of atoms. A promising solution is given by the hydrodynamic theory, which takes into account the nonlocal behavior of the electron response by including the electron pressure and it can be generalized so that it can describe electron spill-out and tunneling effects [2, 3, 4]. This method allows to explore light-matter interactions in extreme scenarios in which microscopic features can strongly affect the macroscopic optical response. In this seminar, I will present the quantum hydrodynamic theory for plasmonics and will discuss some applications including, photon emission [5], strong-coupling [6] and nonlinear optics [7, 8]. 

 

 References

 [1] C. Cirac`ı, R. T. Hill, J. J. Mock, Y. A. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science, vol. 337, no. 6098, pp. 1072 – 1074, 2012. 

 [2] C. Cirac`ı and F. D. Sala, “Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail,” Physical Review B, vol. 93, no. 20, p. 205405, 2016. 

 [3] C. Cirac`ı, “Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory,” Physical Review B, vol. 95, no. 24, p. 245434, 2017. 

 [4] H. M. Baghramyan, F. D. Sala, and C. Cristian, “Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics,” Physical Review X, vol. 11, no. 1, p. 011049, 2021. 

 [5] H. M. Baghramyan and C. Cirac`ı, “Fluorescence quenching in plasmonic dimers due to electron tunneling,” Nanophotonics, vol. 11, no. 11, pp. 2473–2482, 2022.

 [6] C. Cirac`ı, R. Jurga, M. Khalid, and F. D. Sala, “Plasmonic quantum effects on single-emitter strong coupling,” Nanophotonics, vol. 8, no. 10, pp. 1821–1833, 2019. 

 [7] M. Khalid and C. Cirac`ı, “Enhancing second-harmonic generation with electron spill-out at metallic surfaces,” Communications Physics, vol. 3, no. 1, p. 214, 2020. 

 [8] F. De Luca and C. Cirac`ı, “Impact of Surface Charge Depletion on the Free Electron Nonlinear Response of Heavily Doped Semiconductors,” Physical Review Letters, vol. 129, no. 12, p. 123902, 2022.

 
번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
146 2022-04-01 16:00    High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
145 2015-11-24 16:00    Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
144 2016-07-08 14:00    Electronic quasiparticles in the quantum dimer model
143 2016-10-18 15:00    “Hybrid quantum systems with mechanical oscillators”
142 2022-12-20 16:00    Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
141 2015-12-17 11:00    Wavefront engineering for in-vivo Deep brain imaging
140 2018-07-27 13:30    Magnetic reversal of artificial spin ice file
139 2018-07-27 13:30    Magnetic reversal of artificial spin ice file
138 2017-07-14 15:00    Chiral anomaly in disordered Weyl semimetals file
137 2024-06-12 13:30    Competition between superconductivity and density waves in spin-degenerate and spin-orbit-coupled Bernal bilayer graphene
136 2019-11-01 16:00    Electron transport through weak-bonded contact metal with low dimensional nano-material file
135 2022-11-04 16:30    초세대 협업연구실 Quantum- & Nano-Photonics_Multifunctional neural probes with integrated nanophotonics file
134 2019-09-27 14:30    Spin-charge conversion in topological insulators for spintronic applications file
133 2018-12-07 16:00    Novel probes of interacting electrons in 2D systems file
132 2018-10-19 10:00    Energy conversion processes during magnetic reconnection in a laboratory plasma file
131 2016-11-04 13:30    Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
130 2015-08-03 10:30    Axion Search
129 2016-04-01 16:15    Cotunneling drag effect in Coulomb-coupled quantum dots
128 2019-12-03 16:00    Toward Quantum Materials with Correlated Oxides file
127 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”