visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-08-09 14:00 
일시 Aug. 9 (Tue), 14:00 PM 
장소 KI building (E4), Lecture Room Red (B501) 
연사 Dr. YoungChan Kim (Quantum Biophotonics Group, University of Surrey, UK) 
(Optics Seminar) Quantum biology in fluorescent protein: a new model system to study quantum effects in biology
 
1. Presenter: Dr. YoungChan Kim (Quantum Biophotonics Group, University of Surrey, UK)
 
2. Presentation Title: Quantum biology in fluorescent protein: a new model system to study quantum effects in biology
 
3. Date & Time: 2022.08.09 (Tues.) 14:00 pm - 15:00 pm 
 
4. Location: KI building (E4), Lecture Room Red (B501)(Lecture Room)
5. Zoom URL
   Meeting ID: 828 8560 1118
   Passcode: 115849
 
6. Abstract
Quantum effects are usually thought be too delicate to manifest in biology since random molecular interactions was thought to be instantaneously obliterate quantum coherent molecular interactions occurring in wet biological environments. However, recent biological, chemical, and physical breakthroughs have revealed that subtle quantum effects may shape biological processes and functions, as exemplified by photosynthesis, enzyme catalysed reactions, and magnetic field effects on spin-dependent reactions in biology, to name a few. Studying coherent dipole-dipole coupling between biomolecular systems is challenging but holds many fascinating, fundamental questions that will inspire new ways to better understand and enhance health and medicine. Recent study suggests that the yellow fluorescent proteins, VenusA206, exhibit room-temperature exciton coupling when they form a dimer. Because cryogenic temperature is not required to observe such quantum effects, genetically engineered fluorescent protein assemblies could inspire a new way towards developing biological quantum technologies, such as quantum-enhanced biosensors. In this talk, I will present the recent progress in studying quantum biology using fluorescent proteins.
 
Inquiry: Biomedical Optics Laboratory(Prof. Park, YongKeun) at Dept. Physics   chunghalee@kaist.ac.kr 
 
Attachment: CV
 
번호 날짜 장소 제목
274 2020-12-11 16:00  online  Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials
273 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
272 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
271 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
270 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
269 2024-08-16 11:00  E6 1322 (no zoom broadcasting)  Cathodoluminescence for nanophotonics: Applications to plasmonic bandgap materials and perovskite semiconductors file
268 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
267 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
266 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
265 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
264 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
263 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
262 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
261 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
260 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
259 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
258 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
257 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
256 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
255 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials