visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-10-28 11:00 
연사  
장소 E6-2 #1323 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기한: 2023.10.27까지)
 
o 일시: 2022. 10. 28(금)  11:00
o 장소: E6-2 Room 1323
o Zoom Link: https://kaist.zoom.us/j/83127228653  회의 ID:  831 2722 8653
 
o 연사: 김수란 교수(경북대학교 물리교육과)
o 강연주제: Machine-Learning-Guided Prediction Models and Materials discovery for high Tc Cuprates
Abstract
Cuprates have been at the center of long debate regarding their superconducting mechanism; therefore, predicting the critical temperatures of cuprates remains elusive. We demonstrate herein, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO2-plane chemical bonding between the apical anion (O, Cl) and apical cation (e.g., La, Hg, Bi, Tl) are generally correlated with higher Tc;max in experiments. Also, using machine learning, we predict the maximum superconducting transition temperature (Tc,max) of hole-doped cuprates and suggest the functional form for Tc,max with the root-mean-square-error of 3.705 K and R2 of 0.969. We have found that the Bader charge of apical oxygen, the bond strength between apical atoms, and the number of superconducting layers are essential to estimate Tc,max. Furthermore, we predict the Tc,max of hypothetical cuprates generated by replacing apical cations with other elements. Among the hypothetical structures, the cuprates with Ga show the highest predicted Tc,max values, which are 71, 117, and 131 K for one, two, and three CuO2 layers, respectively. These findings suggest that machine learning could guide the design of new high-Tc superconductors in the future.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
365 2025-04-29 16:00  Dr. Tokuro Shimokawa (Okinawa Institute of Science and Technology)  Can experimentally-accessible measures of entanglement distinguish quantum spin liquid and random singlet phases? file
364 2018-10-16 10:00    Capturing protein cluster dynamics and gene expression output in live cells file
363 2023-02-28 11:00    Topotactic redox engineering toward novel material file
362 2022-11-10 16:00    Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
361 2015-11-10 16:00    Rapid heating of matter using high power lasers
360 2015-12-01 16:00    Introducing extra dimensions to spectroscopic studies of advanced quantum materials
359 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence file
358 2023-04-13 11:00    [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
357 2023-12-14 16:00    Superconducting qubits for large-scale quantum computers file
356 2016-09-02 14:30    Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
355 2016-09-02 16:00    Quantum Electrical Transport in Topological Insulator Nanowires
354 2018-10-15 16:00    Universal properties of macroscopic current-carrying systems file
353 2018-04-11 13:30    Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
352 2022-06-10 11:00    Record-quality two-dimensional electron systems file
351 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
350 2017-05-12 13:30    Topological Dirac insulator
349 2025-07-03 14:00  Dr. Young-Gwan Choi (Max Planck Institute )  Quantum sensing with NV centers: nanoscale magnetometry file
348 2018-04-11 16:00    Non-Gaussian states of multimode light generated via hybrid quantum information processing file
347 2016-05-13 13:30    Aperiodic crystals in low dimensions
346 2022-08-09 14:00    Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file