visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2021-06-11 14:30 
일시 Jun. 11 (Fri.), 02:30 PM 
장소 Online seminar 
연사 Dr. Jin Woong Cha(KRISS) 

 

SRC Seminar

 

 

Engineering sound waves and vibrations in multi-mode nanomechanical systems

 

Dr. Jin Woong Cha

Quantum Technology Institute, KRISS

 

Jun. 11 (Fri.), 02:30 PM

Online seminar

https://kaist.zoom.us/j/89283252628
회의 ID: 892 8325 2628

암호: 916514

 

 

 

 

Abstract:

Nanoscale mechanical systems provide versatile physical interfaces with their ability to interact with various physical states, for example, electromagnetic fields (e.g., microwaves and optical light) and quantum states (e.g., spins and electrons). Therefore, engineering nanoscale sound waves and vibrations in nanomechanical systems is essential for a wide range of applications in sensing and information processing both in the classical and quantum regimes. My talk will focus on two different nanomechanical platforms I have recently worked on. In the first part of my talk, I will discuss a unique nanomechanical platform called nanomechanical lattices which enable electrically tunable phonon propagation dynamics [1] and topologically protected phonon transport [2] at MHz frequencies. This platform consists of arrays of mechanically coupled, free-standing silicon-nitride nanomechanical membranes that support propagating flexural elastic waves. For the second part of my talk, I will describe our recent studies on the cavity electromechanics in a superconducting nanoelectromechanical resonator implementing superconducting niobium [3]. This system demonstrates various optomechanical phenomena arising from the interaction of nanomechanical motions and microwave fields (e.g., phonon cooling and amplification, optomechanically induced reflection) and can be used in various applications such as quantum transducers. I will then conclude my talk by briefly describing our ongoing work at KRISS.

 

Reference:

[1] J. Cha, et al. Nature Nanotechnology 13, 1016-1020 (2018)

[2] J. Cha, et al. Nature 564, 229-233 (2018)

[3] J. Cha, et al. Nano Letters 21, 1800-1806 (2021)

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
289 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
288 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
287 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
286 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
285 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
284 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
283 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
282 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
281 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
280 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
279 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
278 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
277 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
276 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
275 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
274 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
273 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
272 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
271 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
270 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities