visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-22 16:00 
연사  
장소 #1323, E6-2 

Physics Seminar

 

 

Tuning functional properties of BiFeO3films using strain and growth chemistry

 

Dr. Daniel Sando

Univ. of New South Wales, Sydney

 

June 22 (Fri.), 04:00 PM

#1323, E6-2

 

Abstract:

Multiferroics – materials with coexisting ferroic orders such as ferroelectricity and (anti)-ferromagnetism – are presently under intense study by virtue of their promise in next-generation data storage devices. Bismuth ferrite (BiFeO3– BFO) is one of the very few that orders above room temperature. In the bulk, BFO is rhombohedral (R), and in thin films [1] its properties are sensitive to strain [2,3]. The discovery of the epitaxially-stabilized “super tetragonal phase” of BFO (T-BFO) [4] incited a flurry of research activity focused on understanding the phase transition and its possible functionalities [5]. T-BFO is also multiferroic, with large ferroelectric polarization and antiferromagnetic order [4], and the strain relaxation-induced T/R phase mixtures and their exceptional piezoelectric responses [6] continue to intrigue and motivate researchers. A particularly important characteristic of this phase mixture is the interconversion between the R,T phases with an applied electric field [6]. Since the oxygen configuration of the R and T polymorphs is different [5], the electronic, magnetic, and optical properties can thus be dynamically modulated. An additional rather crucial (and thus far underexplored) aspect of mixed R/T BFO is the role of chemistryin the formation of the metastable T-phase. Since T-BFO is typically fabricated by pulsed laser deposition, growth parameters can be used as a strong handle to tailor film properties and functionalities.

Here I will describe our work on understanding the influence of strain and growth conditions on the optical, magnetic, and ferroelectric properties of BFO films. I will also show that by precisely controlling fabrication conditions, the formation of the mixed R/T phases in BFO films can be completely suppressed for thicknesses above 70 nm. Such an intriguing result is useful for applications where thicker pure T-BFO films are needed, such as for measuring the expected giant polarization, or for precisely controlling the proportions of the various phases. Finally, through analysis of a large set of epitaxial films, it will be shown that the optical band gap of BFO is rather insensitive to a host of growth and processing parameters [7]. Combined with the numerous other functionalities of this material, one can envisage multifunctional devices, for example, that harvest mechanical and solar energy, or to enhance magnetoelectric coupling at these multiferroic phase boundaries.

References

[1] Sando et al., J. Phys: Condens. Matt. 26, 473201 (2014). 

[2] Infante et al., PRL 105, 057601 (2010). 

[3] Sando et al., Nat. Mater. 12, 641 (2013). 

[4] Bea et al., PRL 102, 217603 (2009). 

[5] Sando et al., Appl. Phys. Rev. 3, 011106 (2016). 

[6] Zeches et al., Science 326, 977 (2009). 

[7] Sando et al., Adv. Opt Mater. 6, 1700836 (2018).

 

 

 Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
405 2022-06-10 16:00    Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
404 2017-03-24 16:00    Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
403 2016-09-29 16:00    Large-scale Silicon Photonic MEMS Switches
402 2015-07-15 14:00    Electronic and optical properties of titanate-based oxide superlattices
401 2019-06-17 10:30    Chiral Spintronics file
400 2019-04-19 16:00    Graphene and hBN heterostructures file
399 2023-09-21 16:00    [CAPP seminar] Axion Magnetic Resonance file
398 2023-10-11 16:00    [High Energy Theory Seminar] Axion Magnetic Resonance
397 2016-01-26 14:00    Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
396 2019-03-29 14:30    Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
395 2018-06-01 11:00    Topological phases in low-dimensional quantum materials file
394 2019-10-29 16:00    Particles and Gravity via String Geometry file
393 2018-04-09 11:00    Doublon-holon origin of the subpeaks at the Hubbard band edges file
392 2019-10-31 10:00    Kondo meets Hubbard: Impurity physics for correlated lattices file
391 2022-06-10 14:30    Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
390 2020-02-13 16:30    Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
389 2019-11-20 16:00    Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
388 2019-11-05 16:00    Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
387 2021-12-03 14:30    Topological Spin Textures: Skyrmions and Beyond file
386 2019-04-26 16:00    Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file