• HOME
  • >
  • 소식
  • >
  • 세미나
장소 #5318(E6-2. 5th fl.) 
일시 AUG. 31 (Thu.), 2 PM 
연사 Prof. Hiroaki Ishizuka (The University of Tokyo) 

“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”

Prof. Hiroaki Ishizuka (The University of Tokyo)

AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)


Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms. 

To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].

In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].


[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981). 

[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).

[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).

[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).

[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).

[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).

[8] Q. Ma et al., preprint (arXiv: 1705.00690).


Contact: Eun Gook Moon, Physics Dept., (

20170831_Hiroaki Ishizuka.pdf

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
133 Oct. 17th (Mon) 11:00 AM  #1323,(E6-2, 1st fl.)  Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam  IMS and examples of the studies on optoelectronic materials
132 8/19 (Mon), 10:00~11:30, 8/22 (Thur), 10:00~11:30  Rm. 1322, E6-2  Nicolas Treps  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
131 Dec.9(Wed), 10:00AM  Zoom  Prof. Andrew Geraci (Northwestern University)  Searching for the QCD axion with the ARIADNE experiment file
130 2019. 8. 22 4PM & 8. 23 3PM  #1323, E6-2  Prof. Andrew N Cleland  Physics and Applications in Nanoelectronics and Nonomechanics file
129 Aug. 4, 2016 (Thu.), 2:30 pm  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Prof. Argyris Nicolaidis  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
128 Mar25(Thur), 04:00PM  Online Seminar (Zoom)  Prof. Atsushi Tokiyasu (Tohoku Univ.)  Search for dark matter axion with Rydberg atoms file
127 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
126 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
125 2014/12/22, 2PM  E6, Rm1319  Prof. Changbong Hyeon (KIAS)  Dynamics of molecular motors: Power stroke vs Brownian ratchet file
124 May. 3 (Fri), 11:00 AM  E6-2. 2st fl. #2502  Prof. Changhee Sohn  Exotic Magnetism file
123 2015/03/04, 12PM  1323호, E6-2  Prof. Choi Hak-Soo(Harvard)  Bioimaging and Biosensing Using Near-Infrared Fluorescence file
122 2016/03/07-06/13  E6, 1501  Prof. David Helfman(KAIST) 외  Physics Colloquium : 2016 Spring file
121 February 21 (Thu.), 16:00 PM  #5313, E6-2  Prof. Diptimoy Ghosh  B-meson charged current anomalies - Theoretical status file
120 October 15, 2020 (Thursday  CAPP Seminar Room #C303, Creation Hall (3F), KAIST Munji Campus  Prof. Gil-Ho Lee (POSTECH)  Graphene-based Josephson junction microwave bolometer file
119 2015/07/23,1:30PM  E4, B401  Prof. Gilles Lérondel (Univ. of Technology of Troyes)  Enhanced ZnO based UV photonics and related applications file
118 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
» AUG. 31 (Thu.), 2 PM  #5318(E6-2. 5th fl.)  Prof. Hiroaki Ishizuka (The University of Tokyo)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
116 DEC. 11 (Tue), 04:00 PM  E6-2. 1st fl. #1323  Prof. Hiroshi Shinaoka  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
115 July 13, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy)  Loop Induced Single Top Partner Production and Decay at the LHC