visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-12-06 16:00 
연사 Vladimir Y. Chernyak (Wayne State University) 
장소 E6-2 #1323 

 

세미나/특강명 

Bright Squeezed Light (BSL) Spectroscopy 

with Interferometry from First Principles

연사명

Vladimir Y. Chernyak

소속기관 

및 직위

Professor,

Department of Chemistry, Wayne State University

개최 일시

Dec 6, 2024 (Fri), 4:00 PM

개최 장소

E6-2 #1323

 
Abstract: 
 We present a theoretical approach that allows understanding the quantum light spectroscopy and interpretation of experimental data from first principles and discuss the main theoretical physics concepts and tools that stand behind it. The latter include (i) Hamiltonian vs Lagrangian picture in classical and quantum mechanics, (ii) Second quantization, (iii) Feynman path integral, (iv) Reduced description and effective action, and (v) Gauge invariance and generalized effective action. The theoretical approach is based on (i) quantum dynamics in Liouville space of mixed states, (ii) Computing the optical signals directly using the many-body Green function techniques, and (iii) Describing the classical light sources/lasers via classical external polarization, rather than a classical driving field produced by the lasers.
 
 Quantum light nonlinear spectroscopic techniques are attributed to the Liouville space Feynman diagrams that label perturbative contributions to the signals, associated with different dynamical processes in a system under spectroscopic study. Due to optical nonlinearity in an auxiliary system, e.g., in a parametric down conversion (PDC) crystal light, produced by a laser shows quantum properties, despite containing a macroscopic number of photons. Quantum features of light, appearing in such spectroscopies, are attributed to loops in Feynman diagrams that describe the corresponding signals. Applications are made to nonlinear response of photosynthetic excitons and difference-frequency-generation spectroscopy.
 
Contact.  안드레이모스칼렌코 교수 (moskalenko@kaist.ac.kr)
 
번호 날짜 연사 제목
공지 2025-09-01 12:00    2025년 가을학기 콜로키움
공지 2025-09-05 11:00    2025년 가을학기 물리학과 특별세미나 (광학/응집물리 분야)
626 2019-09-02 16:00    Fall 2019: Physics Colloquium file
625 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
624 2024-01-26 15:00    In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides
623 2020-09-24 09:00    (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
622 2021-01-28 18:00    Quantum metamaterials: concept, theory, prototypes and possible applications file
621 2023-09-18 11:00    Magic polarisation trapping of polar molecules for tunable dipolar interactions file
620 2015-12-09 14:00    SWELLABLE COLLOIDAL PARTICLES ARE SWELL
619 2015-12-09 11:00    Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
618 2020-09-28 17:30    KAIST Global Forum for Spin and Beyond(Fourth Forum) file
617 2024-03-28 11:00    Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
616 2023-01-12 16:00    Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
615 2021-04-19 19:00    Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
614 2017-12-14 15:00    Exploring the Universe via GWs in the era of multi-messenger astronomy
613 2019-10-25 15:00    Physics Seminar file
612 2024-11-21 11:00  Daniel L. Jafferis (Harvard Univ.)  3d Gravity and Tensor Model file
611 2023-10-04 16:00    [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
610 2024-06-05 10:00    Moir\’e fractals in supermoir\’e structures
609 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
608 2025-06-05 10:00  Dr . On Kim (University of Mississippi)  The Final Result from the Muon g-2 Experiment at Fermilab: The World’s Most Precise Measurement of the Muon Magnetic Anomaly file
607 2016-04-06 15:30    Superconducting Quantum Interference Devices for Precision Detection