visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
219 Mar. 16 (Fri.), 04:0 PM  E6-2. 1st fl. #1323  Dr. YoungDuck Kim  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
218 Nov. 9 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Pilkyung Moon  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
217 Oct. 12 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Daniel Kyungdeock Park  Quantum Advantage in Learning Parity with Noise file
216 DEC. 11 (Tue), 04:00 PM  E6-2. 1st fl. #1323  Prof. Hiroshi Shinaoka  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
215 Jun. 2 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Euyheon Hwang(황의헌)  Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
214 Sep. 22 (Fri.), 01:00 PM  E6-2. 1st fl. #1323  Dr. EunSeong Kim / Department of Physics, KAIST  Superconductor-metal-insulator transition in thin Tantalum films file
213 May. 12 (Fri.), 01:30 PM  E6-2. 1st fl. #1323  Dr. Young Kuk Kim  Topological Dirac insulator
212 Sep. 22 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. GilHo Lee / Department of Physics, POSTECH  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
211 Mar. 29 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Taeyoung Choi  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
210 Apr. 19 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWoo Nam  A family of finite-temperature electronic phase transitions in graphene multilayers file
209 Apr. 19 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Seok Kyun Son  Graphene and hBN heterostructures file
208 Dec. 26 (Wed.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Isaac H. Kim  Brane-like defect in 3D toric code file
207 Apr. 5 (Tue.), 4PM  E6-2. 1st fl. #1322  Dr. Ara Go, Columbia University  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
206 2015/09/07, 3PM  E6-2. 1st fl. #1318  Dr. Jasbinder Sanghera (U.S. Naval Research Laboratory (NRL))  Advanced Optical Materials and Devices at NRL
205 4pm, Sep. 21 (Wed.  E6-2. #2502(2nd fl.)  Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China)  Entanglement probe of two-impurity Kondo physics
204 Sep. 29 (Thu), 4:00 PM  E6-2. #2501(2nd fl.)  Dr. Minu Kim, Institute for Basic Science, Seoul National University  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
203 Nov. 10th(Thu) 4 p.m.  E6-2. #1323(1st fl.)  Prof. Min Seok Jang, Electrical Engineering, KAIST  Low Dimensional Active Plasmonics and Electron Optics in Graphene
202 Oct. 07 (Fri), 4:00 PM  E6-2. #1323(1st fl.)  Dr. Choong Hyun Kim,IBS-CCES, Seoul National University  “Tilt engineering of 4d and 5d transition metal oxides?”
201 May 11 (Wed.), 4 PM  E6-2. #1323(1st fl.)  Dr. Bumjoon Kim, Max Planck Institute for Solid State Research  The quest for novel high-temperature superconductors---Prospects and progress in iridates
200 Nov. 04 (Fri), 1:30 PM  E6-2. #1323(1st fl.)  Dr. Jonghyun Song, Department of Physics, Chungnam National University  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications