visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-07-28 16:00 
일시 Jul. 28 (Thu.) 4PM 
장소 #1323(E6-2. 1st fl.) 
연사 Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University 

Low Dimensional Electrons: On the Road to Hybrid Quantum Systems

 

Jul. 28 (Thu.) 4PM, #1323(E6-2. 1st fl.)

Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University

 

Creating and controlling novel quantum states of matter is at the forefront of modern condensed matter physics. I will discuss two examples of this paradigm from my experiences studying two-dimensional(2d) electron systems. First, I will describe experiments on a class of 2d liquid crystalline states existing in semiconductor heterostructures. These fascinating states, known as quantum Hall nematics, exhibit a mysterious broken rotational symmetry in the 2d plane. We have found that engineering the device structure can experimentally control this symmetry; thereby demonstrating a unique technique for manipulating the orientation of these exotic quantum states. In the second part of my talk I will describe how high frequency surface acoustic waves(SAW) can be used to elucidate the properties of electronic states in two dimensions. Our recent experiments reveal the presence of a metastable conducting phase in the interior of a quantum Hall state. Finally, I will briefly remark on our efforts at the LHQS to create hybrid quantum systems composed of free electrons floating on the surface of liquid helium coupled to nanoscale structures or topological states of matter. These systems provide a unique platform for studying the fundamental physics of low dimensional electrons and their potential quantum computing applications.

 

Contact: CULTure Lab (h.choi@kaist.ac.kr)

번호 날짜 장소 제목
46 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
45 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
44 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
43 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
42 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
» 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
40 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
39 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
38 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
37 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
36 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
35 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
34 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
33 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
32 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
31 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
30 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
29 2016-06-16 16:00  #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
28 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
27 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma