visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
일시 Sep. 02(Fri) 2:30 PM 
장소 E6-2(1st fl.), #1323 
연사 Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
119 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
118 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
117 2022-12-20 16:00  E6-2.1st fl. #1323 & zoom  Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
116 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
115 2023-06-30 11:00  E6-6 #1501  The Dual Mode Quantum Computer file
114 2023-05-22 13:00  E6-6 119  Design & Development of Electrochemical Biosensors for the Detection of T2DM Biomarkers
113 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
112 2023-06-23 11:00  E6-6, #119  Visualizing orbital quantum phenomena at room temperature
111 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
110 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
109 2016-05-13 16:00  E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
108 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
107 2020-10-15 17:00  https://bit.ly/3ndIiJn  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
106 2020-10-09 09:00  https://kaist.zoom.us/j/85161896513?pwd=U3pwWFFZaWVRamxDZUR5REhNeVk0UT09  Quantum Many-Body Simulation file
105 2020-10-16 14:30  https://kaist.zoom.us/j/89198078609  Nanoscale magnetic resonance detection towards nano MRI file
104 2020-10-16 16:00  https://kaist.zoom.us/j/89198078609  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
103 2017-04-06 16:00  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  For whom the Belle tolls
102 2017-07-10 16:00  Jul. 10th (Mon), 4pm  “Intertwined Orders in a Heavy-fermion metal” file
101 2015-10-14 18:00  KAIST Munji Campus Supex Hall  인터스텔라 영화 속의 물리 file
100 2016-04-04 09:30  KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering