visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-10-02 12:00 
연사  
장소 E6-2, #3441 

10월 2일(수) 오후 4시에 Stanford 대학 조영주 박사 (KAIST 물리학과 학부, Stanford 대학 생물학 석사, 응용물리 박사, 현 Stanford 대학 박사후 연구원)를 모시고 세미나를 진행하고자 합니다.

관심있는 분들의 많은 참여 바랍니다. 

 

[Seminar]

2024/10/2, Wed, 4PM-5PM

Physics Department, 3441

 

Data-driven discovery of neural computations

through brain-wide and cell-type-specific dynamical systems

 

 

YoungJu Jo, Ph.D.

 

Postdoctoral Scholar in Bioengineering, Deisseroth Laboratory, Stanford University

 

The brain is a nonlinear dynamical system performing diverse computations essential for behavior and cognition. A mechanistic understanding of neural population dynamics implementing specific computations may require measuring, modeling, and controlling neural activity in behaving animals in a principled manner. Here we propose and experimentally demonstrate a data-driven discovery framework through the closed-loop integration of large-scale neurophysiology and interpretable dynamical systems modeling. This approach enabled the unexpected discovery of cell-type-specific habenular line attractor dynamics implementing reward history integration. Building on this finding, a brain-wide spiking activity map in memory-guided decision-making was constructed, elucidating dynamical structures implementing bidirectional value update. To achieve precise optogenetic control over these identified neural computations, a multifunctional family of new channelrhodopsins was engineered, guided by atomic-resolution protein structures, and their cellular-resolution control was demonstrated in vivo using multiphoton holographic illumination. These converging advances enabled the targeted modulation of neural integration in silico by shaping optogenetic control in both space and time through data-constrained dynamical systems. Together, this work paves the way for data-driven systems neuroscience for reading and writing complex information in the brain.

 

 

 

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
274 2022-01-18 14:00    Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
273 2022-01-25 15:00    Emulating twisted double bilayer graphene with a multiorbital optical lattice file
272 2022-01-26 13:00    An Introduction to Cohomology groups file
271 2022-02-28 16:00    Spin-based training of optical microscopes
270 2022-03-07 16:00    Climate Physics and Modelling(우리말강의)
269 2022-03-14 16:00    Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
268 2022-03-18 11:00    (응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids file
267 2022-03-21 16:00    Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
266 2022-03-25 11:00    (응집물리 세미나) Hund's metallicity in ruthenate systems file
265 2022-03-28 16:00    Ultimate-density atomic semiconductor via flat bands
264 2022-03-29 10:00    Non-reciprocal phase transitions file
263 2022-03-31 10:00    Weiss fields for Quantum Spin Dynamics file
262 2022-03-31 16:00    (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
261 2022-04-01 16:00    High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
260 2022-04-04- 16:00    New paradigms in Quantum Field Theory
259 2022-04-08 11:00    (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
258 2022-04-11 16:00    Emergence of Statistical Mechanics in Quantum Systems
257 2022-04-13 10:30    Harnessing topology and correlations from singularities in 3d-kagome metals
256 2022-04-14 16:00    (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
255 2022-04-15 11:00    (응집물리 세미나) First-principles studies of polar oxides and their applications file