visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-01 16:00 
일시 Apr. 1(Fri.), 04:00 PM 
장소 Zoom webinar 
연사 Dr. Kayoung Lee (KAIST) 

 

SRC Seminar

 

 

High-field Electron Transport and Interaction Induced Phenomena in 2D Materials

 

Dr. Kayoung Lee

Electrical Engineering, KAIST

 

Apr. 1 (Fri.), 04:00 PM

https://kaist.zoom.us/j/89879980781
회의 ID: 898 7998 0781

암호: 808795

 

 

 

Abstract:

In this talk, I will present our research that spans from fundamental electron transport mechanisms to interaction induced phenomena in low-dimensional electron systems, each of which is in dire need of

innovation to incubate new material-based devices with high performance. Using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric, we studied interactions

between the two bilayers, where the interlayer spacing is smaller than the intra-layer particle spacing. I will present frictional drag probed on the double bilayer systems, a phenomenon in which charge current

flowing in one (drive) layer induces a voltage drop in the opposite (drag) layer. At temperatures (T) lower than 10 K, we observe a large anomalous negative drag near the drag layer charge neutrality, which increases dramatically with reducing T, strikingly becoming comparable to the layer resistivity at the lowest T = 1.5 K. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of the drag. The talk will then move on to our recent investigation into electron transport and drift velocity saturation at high electric field in emerging 2D InSe semiconductor with a mobility >2700 cm2/Vs at room temperature. I will report the first measured saturation velocity of 2D InSe exceeding 2 x 107 cm/s. Employing our modified optical phonon emission model to explain the drift velocity saturation at high electric field, we estimate the energy of InSe optical phonons.

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
259 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
258 2023-07-18 11:00  E6-2, #1323  Non-Hermitian Casimir Effect of Magnons
257 2023-06-08 16:00  E6-2, #1323  Thermal decoupling in high-Tc cuprate superconductors
256 2023-07-12 11:00  E6-2, #1323  Study of spin-1/2 antiferromagnetic kagome Heisenberg model by symmetric projected entangled simplex states
255 2023-12-19 16:00  E6-2, #1323  [High Energy Theory Seminar] Non-invertible symmetries, leptons, quarks, and why multiple generations
254 2023-07-19 16:00  E6-2, #1323  [High-Energy Theory Seminar]Deriving the Simplest Gauge-String Duality
253 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
252 2015-11-19 16:00  E6-2, #1323  Emergent Collective Phenomena and Functions at Reduced Dimensions
251 2015-11-24 16:00  E6-2, #1323  Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
250 2015-11-28 10:00  E6-2, #1323  Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier
249 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
248 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
247 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
246 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
245 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
244 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
243 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
242 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
241 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
240 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?