visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-19 15:00 
일시 May 19, 2016 (Thur.) 3PM 
장소 May 19, 2016 (Thur.) 3PM, 
연사 Dr. Michael Betz, CERN 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 날짜 장소 제목
280 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
279 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
278 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
277 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
276 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
275 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
274 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
273 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
272 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
271 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
270 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
269 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N new
268 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
267 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
266 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
265 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
264 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
263 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
262 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
261 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy