visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-11-20 16:00 
일시 Nov. 20 (Fri.), 04:00 PM 
장소 Online 
연사 Dr. Dohun Kim 

 

SRC Seminar

 

 

 

 

 

Coherent control of field gradient induced quantum dot spin qubits

 

 

 

Dr. Dohun Kim

 

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University

 

 

 

Nov. 20 (Fri.), 04:00 PM

 

Online seminar

 

https://kaist.zoom.us/j/82243139535
회의 ID: 822 4313 9535
암호: 151742

 

 

 

 

 

 

 

Abstract:

 

The electron spin degree of freedom in solids form natural basis for constructing quantum two level systems, or qubits. The electron spin qubit offers a route for fast manipulation of spins using magnetic resonance or field gradient induced electric control, but generally suffers from dephasing due to strong coupling to the environment, especially nuclear spin bath, where decoherence dynamics is often non-Markovian and quasi-static. This talk will review experimental progress of fast GaAs based spin qubits and efforts to mitigate or even control the environment nuclear spin bath using hyperfine interaction. Starting from discussing general introduction to quantum transport measurements in quantum dots, circuit design, and need for high-throughput measurement methods for developing highly coherent and scalable qubit platform, I will focus on implementations of advanced quantum measurement and control protocols of singlet-triplet qubits including high fidelity singlet-shot measurements, Bayesian estimation-based adoptive control, and sequential Monte-Carlo method. In particular, we show that clever quantum control using FPGA-based hardware programming enables real time Hamiltonian parameter estimation actively suppressing quasi-static noise.

 

 

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
330 2023-03-24 11:00  E6-2 #1323  (응집물리 세미나)Floquet simulators of topological surface states in isolation
329 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
328 2023-05-12 11:00  E6-2 #1323  (응집물리 세미나)Interlayer conductivity and plasmon in weakly coupled layered systems
327 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
326 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
325 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
324 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
323 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics
322 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
321 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
320 2023-04-27 16:00  E6-2 #1323  (광학분야 세미나)On-chip spectrometers based on CMOS image sensors
319 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
318 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
317 2023-04-14 12:00  E6-2 #1323  (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
316 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
315 2023-05-18 16:00  E6-2 #1323  (광학분야 세미나)Dielectric metasurfaces for optimized optical system and spatial light modulators
314 2023-05-19 11:00  E6-2 #1323  (응집물리 세미나)Dipole condensations in Tilted Bose-Hubbard Chains
313 2024-01-24 15:00  E6-2 #1323  Determination of single molecule loading rate during mechanotransduction file
312 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
311 2023-03-17 11:00  E6-2 #1323  (응집물리 세미나)Operando electron microscopy investigation of domain dynamics in twisted van der Waals materials file