visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

The principles of collective learning

2018.07.06 16:49

admin 조회 수:4348

날짜 2018-07-09 14:00 
일시 July 9 (Mon.), 14:00 PM 
장소 #1323, E6-2 
연사 Prof. Cesar A. Hidalgo, MediaLab, MIT 

 

Physics Seminar

 

 

The principles of collective learning

 

Prof. Cesar A. Hidalgo

(MIT, MediaLab)

 

July 9 (Mon.), 14:00 PM

#1323, E6-2

 

 

Abstract:

 

How do economies enter new economic activities? In this talk, I will summarize recent advances in the study of economic diversification, knowledge diffusion, and collectivelearning. I will start by presenting the three basic principles of collective learning: the principle of improvement, the principle of relatedness, and the principle of knowledge intensity. Then, I will move to more recent findings showing how to define optimal strategies within the constraints defined by these principles, how to unpack the idea of relatedness of activities by using data on the work history of all of the individuals in a large country, and what are the consequences of these principles for the spatial distribution of economic activity. Finally, I will present work on the creation and construction of large scale data visualization tools (datausa.io datachile.io dataafrica.io atlas.media.mit.edu) and show how these are changing the way in which governments and companies organize and deliver their data.

Contact : Prof. Hawoong Jeong (hjeong@kaist.ac.kr)

 

Department of Physics, KAIST

 

번호 날짜 장소 제목
213 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
212 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
211 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
210 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
209 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
208 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
207 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
206 2018-12-26 16:00  E6-1. 3rd fl. #3434  Informal Workshop on Topology and Correlation file
205 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
204 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
203 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
202 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
201 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
200 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
199 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
198 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
197 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
196 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
195 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
194 2018-11-08 16:00  #1323, E6-2  Conformality lost file