Large-scale Silicon Photonic MEMS Switches
2016.09.28 19:50
장소 | E6-2 #1323 (1st floor) |
---|---|
일시 | Sep. 29th(Thu), 4PM |
연사 | Dr. Sangyoon Han, Department of Physics, KAIST |
Large-scale Silicon Photonic MEMS Switches
Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)
Dr. Sangyoon Han, Department of Physics, KAIST
Abstract:
Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.
Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.
In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.
Biography:
Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
222 | July 8(Mon), 14:00 | E6, #1322 | T. L. M. Guedes (Univ. of Konstanz) |
Ultrabroadband squeezed pulses and their relation to relativity
![]() |
221 | July 31(Wed.)/ 16:00 | E6-2, #1323 | Dr. Ivan Borzenets |
Features of ballistic superconducting graphene
![]() |
220 | July 30 (Tue), 4:00 PM | #1323, E6-2 | Dr. Mingu Kang |
Dirac fermions and flat bands in correlated kagome metals
![]() |
219 | July 27, 2018 at 15:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Dr. Hyejung Kim(Technische University Dresden) |
Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima
![]() |
218 | July 26, 2018 at 14:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Manki Kim (Department of Physics, Cornell University) |
Inflation in String Theory and Backreaction
![]() |
217 | July 25(Thur.),4:00PM | E6-2, #1323 | Prof.Bohm-Jung Yang |
Band topology of twisted bilayer graphene
![]() |
216 | July 21, 2022 (Thu) 4:00 PM(KST) | CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus | Prof. Jihn E. Kim (Kyoung Hee University) |
Quintessential axions
![]() |
215 | July 21 - August 2 | E6-2,# 5318 | Junmou Chen/Thomas Flacke/Kaoru Hagiwara/Junichi Kanzaki/Chris Kelso/Jeong Han Kim/Kyoungchul Kong/Gabriel Lee/Hye-Sung Lee/Ian Lewis |
Challenges and Opportunities in Theoretical Particle Physics 2019
![]() |
214 | July 2. 2018 (Monday) 3:00 PM | Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus | Dr. Peter Winter (Argonne National Laboratory) |
High Precision Magnetic Field Measurement for the Muon g-2 Experiment
![]() |
213 | July 2, 2020 (Thursday) | Zoom Video Conference Seminar | Dr. Emmanuel Flurin (CEA Saclay) |
An irreversible qubit-photon coupling for the detection of itinerant microwave photons
![]() |
212 | July 13, 2018 at 14:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy) | Loop Induced Single Top Partner Production and Decay at the LHC |
211 | July 10 (Wed.), 04:00 PM- | Academic Cltural Complex (E9) 5층 스카이라운지 | Prof. Sidney Nagel/Young-Kee Kim |
Public Lectures
![]() |
210 | Jul. 28 (Thu.) 4PM | #1323(E6-2. 1st fl.) | Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University | Low Dimensional Electrons: On the Road to Hybrid Quantum Systems |
209 | Jul. 14th (THU), 15:00 | E6 #1501 & Zoom | Dr. Sunghun Kim(Institute of Natural Science, KAIST) | Pure two-dimensional quantum electron liquid and its phase transition |
208 | Jul. 14th (THU), 14:15 | E6 #1501 & Zoom | Dr. Hyeong Jun LEE(Institute of Natural Science, KAIST) | Hund and electronic correlations in ruthenium-based systems |
207 | Jul. 14th (THU), 13:30 | E6 #1501 & Zoom | Dr. Jahyun Koo(Institute of Natural Science, KAIST) | Electronic structure and anomalous transport properties of topological materials by first principle calculation |
206 | Jul. 08 (Fri.) 2PM | #1323(E6-2. 1st fl.) | Dr. Junhyun Lee, Harvard University | Electronic quasiparticles in the quantum dimer model |
205 | Jul. 08 (Fri.) 11:00 AM | #1323(E6-2. 1st fl.) | Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) | Isostatic magnetism |
204 | Jul. 07 (Thu.) 2PM | #1323(E6-2. 1st fl.) | Dr. Eun Ah Kim, CORNELL UNIV. | Let there be topological superconductors |
203 | Jul 3rd, 2019 (Wed) | E6-2, 2501 | Kyung Soo Choi |
Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics"
![]() |