visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-09-23 11:00 
일시 Sep. 23 (Fri.), 11:00AM 
장소 E6-2 #1323 
연사 이길호(포스텍 물리학과 교수) 
세미나 영상은 아래 링크로 확인하시기 바랍니다. (공개기한: 2023.09.22.까지)
 
o Date / Time : Sep. 23.  2022, 11:00 AM
o Place : Room 1323, KAIST Natural Sciences Lecture Hall(E6) (자연과학동 1323호)
o Zoom Link : https://kaist.zoom.us/j/86450686082   회의 ID: 864 5068 6082
 
Speaker : Prof. Gil-Ho Lee (Department of Physics, Pohang University)
Talk Title :  Steady Floquet–Andreev states in graphene Josephson junctions
Abstract
Engineering quantum states through light-matter interaction has created a new paradigm in condensed matter physics. A representative example is the Floquet-Bloch state, which is generated by time-periodically driving the Bloch wavefunctions in crystals. Previous attempts to realise such states in condensed matter systems have been limited by the transient nature of the Floquet states produced by optical pulses, which masks the universal properties of non-equilibrium physics. Here, we report the generation of steady Floquet Andreev (F-A) states in graphene Josephson junctions by continuous microwave application and direct measurement of their spectra by superconducting tunnelling spectroscopy [1]. We present quantitative analysis of the spectral characteristics of the F-A states while varying the phase difference of superconductors, temperature, microwave frequency and power. The oscillations of the F-A state spectrum with phase difference agreed with our theoretical calculations. Moreover, we confirmed the steady nature of the F-A states by establishing a sum rule of tunnelling conductance, and analysed the spectral density of Floquet states depending on Floquet interaction strength. This study provides a basis for understanding and engineering non-equilibrium quantum states in nano-devices.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 장소 제목
247 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
246 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
245 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
244 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
243 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
242 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
241 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
240 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals
239 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
238 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
237 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
236 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
235 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
234 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
233 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
232 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
231 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
230 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
229 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
228 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction