visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-04-28 14:30 
일시 Apr. 28 (Fri.), 02:30 PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JeongYoung Park Graduate School of EEWS, KAIST 

 

Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion

 

Dr. JeongYoung Park

Graduate School of EEWS, KAIST

Apr. 28 (Fri.), 02:30 PM

E6-2. 1st fl. #1323

 

 

Abstract: 

A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance. 

In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.

 

 

 

번호 날짜 장소 제목
309 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
308 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
307 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
306 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
305 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
304 2023-04-13 11:00  Zoom  [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
303 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
302 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
301 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
300 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
299 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
298 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
297 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
296 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
295 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
294 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
293 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
292 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
291 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
290 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals