Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation
2018.06.12 14:21
장소 | E6-2, 2nd fl. #2502 |
---|---|
일시 | June 14 (THU), 10:00 AM |
연사 | Prof. Kenji Toyoda |
Physics Seminar
“Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”
Osaka University
Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes. They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.
In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.
Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)
Department of Physics, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
220 | DEC. 11 (Tue), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Hiroshi Shinaoka |
Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations
![]() |
219 | DEC. 16~18 (Sun~Tue) | E6-2. 1st fl. #1323 | Prof. Keisuke Totsuka |
Lectures on 2d Conformal Field Theory
![]() |
218 | Dec. 26 (Wed.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Isaac H. Kim |
Brane-like defect in 3D toric code
![]() |
217 | DEC. 27 (Thu), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Na Young Kim |
Quantum Innovation (QuIN) Laboratory
![]() |
216 | Mar. 29 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Seung Hyub Baek |
Epitaxial Multifunctional Oxide Thin Films for Novel Electronics
![]() |
215 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
214 | Apr. 19 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Seok Kyun Son |
Graphene and hBN heterostructures
![]() |
213 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |
212 | Sep. 10 (Tue.), 03:00 PM | E6-2. 1st fl. #1323 | Dr. Mikhail Kiselev |
Two-Stage Kondo Effect
![]() |
211 | Sep. 27 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Jindong Song |
0D/1D/2D/3D III-V materials grown by MBE for Optelectronics
![]() |
210 | Sep. 27 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Joon Sue Lee |
Spin-charge conversion in topological insulators for spintronic applications
![]() |
209 | Nov. 1 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWook Kim |
Squeezing the best out of 2D materials
![]() |
208 | Nov. 1 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Ju-Jin Kim |
Electron transport through weak-bonded contact metal with low dimensional nano-material
![]() |
207 | Apr. 5 (Tue.), 4PM | E6-2. 1st fl. #1322 | Dr. Ara Go, Columbia University | A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space |
206 | 2015/09/07, 3PM | E6-2. 1st fl. #1318 | Dr. Jasbinder Sanghera (U.S. Naval Research Laboratory (NRL)) | Advanced Optical Materials and Devices at NRL |
205 | 4pm, Sep. 21 (Wed. | E6-2. #2502(2nd fl.) | Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China) | Entanglement probe of two-impurity Kondo physics |
204 | Sep. 29 (Thu), 4:00 PM | E6-2. #2501(2nd fl.) | Dr. Minu Kim, Institute for Basic Science, Seoul National University | Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip? |
203 | May 11 (Wed.), 4 PM | E6-2. #1323(1st fl.) | Dr. Bumjoon Kim, Max Planck Institute for Solid State Research | The quest for novel high-temperature superconductors---Prospects and progress in iridates |
202 | May 24 (Tue) 4 PM | E6-2. #1323(1st fl.) | Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University | Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density |
201 | Oct. 07 (Fri), 1:30 PM | E6-2. #1323(1st fl.) | Dr. Suk Bum Chung, IBS-CCES , Seoul National University | “Symmetry and topology in transition metal dichalcogenide?” |