visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2842

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
102 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
101 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
100 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
99 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
98 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
97 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
96 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
95 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
94 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
93 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
92 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
91 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
90 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
89 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
88 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
87 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
86 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
85 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
84 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
83 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file