visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-07-28 16:00 
일시 Jul. 28 (Thu.) 4PM 
장소 #1323(E6-2. 1st fl.) 
연사 Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University 

Low Dimensional Electrons: On the Road to Hybrid Quantum Systems

 

Jul. 28 (Thu.) 4PM, #1323(E6-2. 1st fl.)

Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University

 

Creating and controlling novel quantum states of matter is at the forefront of modern condensed matter physics. I will discuss two examples of this paradigm from my experiences studying two-dimensional(2d) electron systems. First, I will describe experiments on a class of 2d liquid crystalline states existing in semiconductor heterostructures. These fascinating states, known as quantum Hall nematics, exhibit a mysterious broken rotational symmetry in the 2d plane. We have found that engineering the device structure can experimentally control this symmetry; thereby demonstrating a unique technique for manipulating the orientation of these exotic quantum states. In the second part of my talk I will describe how high frequency surface acoustic waves(SAW) can be used to elucidate the properties of electronic states in two dimensions. Our recent experiments reveal the presence of a metastable conducting phase in the interior of a quantum Hall state. Finally, I will briefly remark on our efforts at the LHQS to create hybrid quantum systems composed of free electrons floating on the surface of liquid helium coupled to nanoscale structures or topological states of matter. These systems provide a unique platform for studying the fundamental physics of low dimensional electrons and their potential quantum computing applications.

 

Contact: CULTure Lab (h.choi@kaist.ac.kr)

번호 날짜 장소 제목
72 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
71 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
70 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
69 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
68 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
67 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
66 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
65 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
64 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
63 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
62 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
61 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
60 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
59 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
58 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
57 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
56 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
55 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
54 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
53 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file