visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-14 15:00 
일시 June 14, 2016 (Tue) 3PM 
장소 #1323 (E6-2 1st fl.) 
연사 Prof. Seungyong Hahn, Florida State University 

No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets

 

June 14, 2016 (Tue) 3PM , #1323 (E6-2 1st fl.)
Prof. Seungyong Hahn, Florida State University


Abstract:


Firstly introduced in 2010, the No-Insulation (NI) high temperature superconductor (HTS) winding technique is expected to provide a practical solution for protection of HTS magnets, one of the most critical challenges in high-field (>20-T) HTS magnets. The key idea is to eliminate turn-to-turn insulation within an HTS coil and, in a quench event, current can be automatically diverted to the adjacent turns through turn-to-turn shorts. As a result, an NI magnet can be designed at a substantially higher operating current density than that of its insulated counterpart, thus the magnet becomes extremely compact, yet “self-protecting.” To date, over 100 NI HTS coils have been constructed and tested to have successfully demonstrated the self-protecting feature of NI coils. In a magnet level, a total of 9 NI magnets have been designed, constructed, and tested, including the recent 26-T 35-mm all-REBCO magnet that was designed by Hahn and constructed by SuNAM. To date, all of NI magnets survived after multiple consecutive quenches at their nominal operating temperature ranged 4.2 – 20 K. An NI magnet, however, has a major drawback of “charging delay” due to its turn-to-turn shorts. Several variations of the NI technique, including the Partial-No-Insulation (PNI) and the Metallic-Cladding-Insulation (MCI), are proposed by several groups, with which 5 – 50 times reduced charging delays were reported than those of their NI counterparts. This presentation provides a summary of the NI magnet technologies, relevant to design and construction of axion detection magnets, for the past 5 years, which include: 1) recent quench test results of two all-REBCO magnets, 26-T/35-mm and 7-T/78-mm; 2) a 9 T REBCO insert that reached a record high field of 40 T in a background field of 31 T; 3) “electromagnetic quench propagation” as the self-protecting mechanism of an NI magnet; 4) potential of the NI technique for the next-generation ultra high field magnets; 5) major challenges and potential pitfalls. 


Contact: CAPP Administration Office(T.8166)

번호 날짜 장소 제목
공지 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022)
공지 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT)
공지 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid
공지 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates
공지 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer
공지 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions
공지 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정
179 2011-05-16 16:00  E6, 1501  Photonics with surface plasmon polaritons
178 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
177 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
176 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
175 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
174 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
173 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
172 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
171 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
170 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
169 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
168 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
167 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
166 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
165 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
164 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
163 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
162 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
161 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
160 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes