visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-08-31 14:00 
일시 AUG. 31 (Thu.), 2 PM 
장소 #5318(E6-2. 5th fl.) 
연사 Prof. Hiroaki Ishizuka (The University of Tokyo) 

“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”

Prof. Hiroaki Ishizuka (The University of Tokyo)

AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)

 

Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms. 

To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].

In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].

 

[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981). 

[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).

[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).

[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).

[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).

[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).

[8] Q. Ma et al., preprint (arXiv: 1705.00690).

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

20170831_Hiroaki Ishizuka.pdf

번호 날짜 장소 제목
469 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
468 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
467 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
466 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
465 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
464 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
463 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
462 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
461 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
460 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
459 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
458 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
457 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
456 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
455 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
454 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
453 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
452 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
451 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
450 2019-10-29 14:30  #1323, E6-2  Quantum sensing file