visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-19 15:00 
연사  
장소 May 19, 2016 (Thur.) 3PM, 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
254 2022-04-25 16:00    Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
253 2022-04-28 16:00    (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
252 2022-05-02 16:00    What can we learn from the history of science and technology?(우리말강의)
251 2022-05-09 16:00    Searching for new electronic properties in correlated material flatland
250 2022-05-10 16:00    (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
249 2022-05-11 16:00    Gravity as a phenomenon in quantum dynamics
248 2022-05-12 16:00    New frontiers of electroweak physics at the LHC
247 2022-05-13 14:30    Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
246 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
245 2022-05-16 16:00    Design synthetic topological matter with atoms and lights
244 2022-05-18 16:00    Geometry, Algebra, and Quantum Field Theory
243 2022-05-19 15:00    (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
242 2022-05-19 15:00    (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
241 2022-05-19 16:00    Chasing Long Standing Neutrino Anomalies with MicroBooNE
240 2022-05-20 11:00    (응집물리 세미나) Exploration of new polymorphs in van der Waals crystals
239 2022-05-23 16:00    Novel electronic transport in topological van der Waals magnets
238 2022-05-25 14:00    Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
237 2022-05-25 16:00    Uncovering New Lampposts for Dark Matter: Continuum or Conformal
236 2022-05-26 16:00    (광학분야 특별세미나)Topological photonic devices
235 2022-05-27 11:00    Current Status and Future Plans of ADMX file