visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-24 16:00 
일시 2015/11/24, 4PM 
장소 E6-2, #1323 
연사 Dr. Kab-Jin Kim (Institute for Chemical Research, Kyoto University, Japan) 

Topology-based understanding of spin dynamics in inhomogeneously magnetized systems

 

Nov. 24 (TUE), 4:00 p.m. , Seminar Room(#1323)

Dr. Kab-Jin Kim, Institute for Chemical Research, Kyoto University(apan)

 

The advance of modern magnetism and spintronics mostly rely on the understanding of spin dynamics in various systems. In particular, spin dynamics in inhomogeneously magnetized systems has received significant attention because of the academic interest it inspires, as well as its potential applications in data storage and logic devices. A magnetic domain wall (DW), the boundary of two magnetic domains having different magnetic orientation, is a representative system showing an inhomogeneous spin configuration. Due to the non-uniform spin structure, the DW generally exhibits unique dynamic behaviors upon external forces. An in-depth understanding of the dynamics of DW not only promotes the progress the DW study but also opens a new avenue in spintronic research. For example, several intriguing physics such as spin transfer torque and spin orbit torque have been uncovered via the DW dynamics study in the past decade, and these new findings now opens a new research field, namely the spin-orbitronics.

This talk will review the progress of magnetic DW study and its contribution to the spintronics field. Then, a recent experimental result on the topology-based spin dynamics will be discussed.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
113 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
112 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
111 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
110 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
109 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
108 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
107 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
106 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
105 2022-12-13 11:00  E6-2 #1322  Art of thin film engineering toward topological quantum computation file
104 2022-12-20 16:00  E6-2.1st fl. #1323 & zoom  Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
103 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
102 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
101 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
100 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
99 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
98 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
97 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
96 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions
95 2023-02-20 17:00  KI building (E4), Lecture Room Red (B501)  (Optics Seminar) Neural Holography for Next generation Virtual and Augmented Reality Displays file
94 2023-02-27 12:00  E6-1 #1501  2023 봄학기 콜로키움 전체 일정 file