visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-01-26 14:00 
연사  
장소 E6-2, #1323 

Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data

 

Jan. 26 (Tue), 2PM,  E6-2. #1323
Dr. Sergei V. Kalinin,  Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

 

Structural and electronic properties of oxide surfaces control their physical functionalities and electrocatalytic activity, and are currently of interest for energy generation and storage applications. In this presentation, I will discuss several examples of high-resolution studies of the electronic and electrochemical properties of oxide surfaces enabled by multidimensional scanning probe microscopies. On the mesoscopic scale, combination of strain- and current sensitive scanning probe microscopies allows to build nanometer-scale maps of local reversible and irreversible electrochemical activities. The use of multivariate statistical methods allows separating the complex multidimensional data sets into statistically significant components which in certain cases can be mapped onto individual physical mechanisms. I will further discuss the use of in-situ Pulsed Laser Deposition growth combined with atomic resolution Scanning Tunneling Microscopy and Spectroscopy to explore surface structures and electrochemical reactivity of oxides on the atomic scale. For SrRuO3, we directly observe multiple surface reconstructions and link these to the metal-insulator transitions as ascertained by UPS methods. On LaxCa1-xMnO3, we demonstrate strong termination dependence of electronic properties and presence of disordered oxygen ad-atoms. The growth dynamics and surface terminations of these films are discussed, along with single-atom electrochemistry experiments performed by STM. Finally, I explore the opportunities for atomically-resolved imaging and property data mining of functional oxides extending beyond classical order parameter descriptions, and giving rise to the deep data analysis in materials research. 
This research is supported by the by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, and was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.

 

Contact: Chan-Ho Yang, Physics Dept., (chyang@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
334 2019-12-13 13:30    Biophysics Mini-symposium at KAIST file
333 2019-12-18 16:00    Road to Higher Tc Superconductivity file
332 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
331 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
330 2020-01-17 16:00    Symmetry Breaking and Topology in Superfluid 3He file
329 2020-02-12 13:00    From inflation to new weak-scale file
328 2020-02-13 16:30    Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
327 2020-02-20 16:00    Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
326 2020-07-02 16:00    An irreversible qubit-photon coupling for the detection of itinerant microwave photons file
325 2020-08-17 20:00    Using magnetic tunnel junctions to compute like the brain file
324 2020-08-25 20:00    KAIST Global Forum for Spin and Beyond (Second Forum) file
323 2020-09-11 14:00    SRC Seminar file
322 2020-09-14 17:30    KAIST Global Forum for Spin and Beyond (Third Forum) file
321 2020-09-22 09:30    Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
320 2020-09-24 09:00    (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
319 2020-09-28 17:30    KAIST Global Forum for Spin and Beyond(Fourth Forum) file
318 2020-10-09 09:00    Quantum Many-Body Simulation file
317 2020-10-15 16:00    Graphene-based Josephson junction microwave bolometer file
316 2020-10-15 16:00    Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
315 2020-10-15 17:00    Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file