visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
387 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
386 2019-07-16 16:00  Rm. 1323 (E6-2)  2019 Physics Distinguished Lecture file
385 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
384 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
383 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
382 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
381 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
380 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
379 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
378 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
377 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
376 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
375 2020-11-17 12:00  Online(Zoom)  Quantum- & Nano-Photonics" 세미나 시리즈 file
374 2023-05-15 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Role of dark Higgs boson in DM physics and cosmology file
373 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
372 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
371 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
370 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
369 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
368 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file