No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
2016.06.13 17:16
장소 | #1323 (E6-2 1st fl.) |
---|---|
일시 | June 14, 2016 (Tue) 3PM |
연사 | Prof. Seungyong Hahn, Florida State University |
No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
June 14, 2016 (Tue) 3PM , #1323 (E6-2 1st fl.)
Prof. Seungyong Hahn, Florida State University
Abstract:
Firstly introduced in 2010, the No-Insulation (NI) high temperature superconductor (HTS) winding technique is expected to provide a practical solution for protection of HTS magnets, one of the most critical challenges in high-field (>20-T) HTS magnets. The key idea is to eliminate turn-to-turn insulation within an HTS coil and, in a quench event, current can be automatically diverted to the adjacent turns through turn-to-turn shorts. As a result, an NI magnet can be designed at a substantially higher operating current density than that of its insulated counterpart, thus the magnet becomes extremely compact, yet “self-protecting.” To date, over 100 NI HTS coils have been constructed and tested to have successfully demonstrated the self-protecting feature of NI coils. In a magnet level, a total of 9 NI magnets have been designed, constructed, and tested, including the recent 26-T 35-mm all-REBCO magnet that was designed by Hahn and constructed by SuNAM. To date, all of NI magnets survived after multiple consecutive quenches at their nominal operating temperature ranged 4.2 – 20 K. An NI magnet, however, has a major drawback of “charging delay” due to its turn-to-turn shorts. Several variations of the NI technique, including the Partial-No-Insulation (PNI) and the Metallic-Cladding-Insulation (MCI), are proposed by several groups, with which 5 – 50 times reduced charging delays were reported than those of their NI counterparts. This presentation provides a summary of the NI magnet technologies, relevant to design and construction of axion detection magnets, for the past 5 years, which include: 1) recent quench test results of two all-REBCO magnets, 26-T/35-mm and 7-T/78-mm; 2) a 9 T REBCO insert that reached a record high field of 40 T in a background field of 31 T; 3) “electromagnetic quench propagation” as the self-protecting mechanism of an NI magnet; 4) potential of the NI technique for the next-generation ultra high field magnets; 5) major challenges and potential pitfalls.
Contact: CAPP Administration Office(T.8166)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
205 | May 13 (Fri.) 4 PM | E6. #1501(1st fl.) | Dr. Hosub Jin, Dept. of Physics, UNIST | Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics |
204 | May 11 (Wed.), 4 PM | E6-2. #1323(1st fl.) | Dr. Bumjoon Kim, Max Planck Institute for Solid State Research | The quest for novel high-temperature superconductors---Prospects and progress in iridates |
203 | May 1 (Wed), 4:00 PM | #1323, E6-2 | Dr. Sungkyun Choi |
Raman and x-ray scattering study on correlated electron systems: two case examples
![]() |
202 | Mar. 2nd (Thu), 4:00 p.m | #1323(E6-2. 1st fl.) | Dr. Jonathan Denlinger, Lawrence Berkeley National Lab | “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems” |
201 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
200 | Mar. 29 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Seung Hyub Baek |
Epitaxial Multifunctional Oxide Thin Films for Novel Electronics
![]() |
199 | MAR. 26 (TUE), 0300 PM | E6-2. 2st fl. #2501 | Prof. Jung Hoon Han |
Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets
![]() |
198 | Mar. 24 (Fri.), 4:00 PM | #1323 (1st fl. E6-2) | Dr. SangWook Lee | Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties |
197 | Mar. 24 (Fri.), 2:30 PM | #1323 (1st fl. E6-2). | Dr. MahnSoo Choi | Topological Dynamics |
196 | Mar. 16 (Fri.), 04:0 PM | E6-2. 1st fl. #1323 | Dr. YoungDuck Kim |
Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics
![]() |
195 | Mar. 16 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JinHee Kim |
산화물 다층박막에서의 다양한 물리현상
![]() |
194 | Mar 2 (Tue.), 16:00 | Online | Dr. Dmitry Svintsov |
Sensitive terahertz detection with graphene-based transistors
![]() |
193 | June 4 (Tue.), 5:00 PM | #1323, E6-2 | Prof. Minsu Kim |
Stochastic nature of bacterial eradication using antibiotics
![]() |
192 | June 28 (Fri.), 13:30 PM | #1323, E6-2 | Dr. Yusuke Kozuka |
Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures
![]() |
191 | June 27 (Wed.), 13:30 PM | #1323, E6-2 | Dr. Jung Sik Park |
Magnetic reversal of artificial spin ice
![]() |
190 | June 27 (Thu), 2:00 PM | #2502, E6-2 | Hyun-Yong Lee |
Gapless Kitaev Spin Liquid to Loop and String Gases
![]() |
189 | June 22 (Fri.), 04:00 PM | #1323, E6-2 | Dr. Daniel Sando |
Tuning functional properties of BiFeO3 films using strain and growth chemistry
![]() |
188 | June 22 (Fri.), 04:00 PM | #1323, E6-2 | Dr. Daniel Sando |
Tuning functional properties of BiFeO3 films using strain and growth chemistry
![]() |
187 | June 17 (Mon.), 10:30 AM | #1323, E6-2 | Dr. See-Hun Yang |
Chiral Spintronics
![]() |
» | June 14, 2016 (Tue) 3PM | #1323 (E6-2 1st fl.) | Prof. Seungyong Hahn, Florida State University | No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets |