visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-10 16:00 
일시 2015/11/10, 4PM 
장소 E6-2, #1323 
연사 Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) 

“Rapid heating of matter using high power lasers

 

 Dr. Woosuk Bang

Physics division, Los Alamos National Laboratory

 

Nov. 10 (TUE), 4:00 p.m. , Seminar Room(#1323)

 

 With the development of several novel heating sources, scientists can now heat a small sample rapidly above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. On the Trident laser facility at Los Alamos National Laboratory, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils rapidly and uniformly. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. We developed a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

Using even smaller targets (~10 nm radius spheres of solid deuterium), ion temperatures exceeding 108 K have been achieved in the laboratory. We will discuss briefly about nuclear fusion experiments using high power lasers.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
429 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
428 2019-03-26 15:00  E6-2. 2st fl. #2501  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
427 2018-06-18 10:00  E6-2. 2nd fl. #2502  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
426 2015-10-16 16:00  E6-2. 2nd fl. #2501  Fluctuations of entropy production in partially masked electric circuits
425 2015-09-14 14:00  E6-2. 2nd fl. #2501  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
424 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
423 2016-03-11 13:30  E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
422 2016-03-11 16:00  E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
421 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
420 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
419 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
418 2022-05-25 16:00  E6-2. 1st fl. #1323 / Zoom  Uncovering New Lampposts for Dark Matter: Continuum or Conformal
417 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
416 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
415 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
414 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
413 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
412 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
411 2017-04-28 14:30  E6-2. 1st fl. #1323  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
410 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy