• HOME
  • >
  • 소식
  • >
  • 세미나
장소 Zoom webinar 
일시 May. 13 (Fri.), 02:30 PM 
연사 Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University) 

SRC Seminar



Topological Superconducting Spintronics Towards Zero-Power Computing Technologies


Dr. Kun-Rok Jeon

Department of Physics, Chung-Ang University


May. 13 (Fri.), 02:30 PM
회의 ID: 883 2392 2428

암호: 839974


Semiconductor (SC) spintronics [1-4] aims to integrate memory and logic functions into a single device. Ferromagnetic tunnel contacts have emerged as a robust and technically viable method to inject spin current into a SC up to room temperature, and to detect it [3-7]. Intriguingly, it has been established that the spin current in ferromagnetic tunnel contacts can be created by thermal means (driven by a heat flow), namely Seebeck spin tunneling [8]. So far, the creation of thermal spin current relies on the spin-dependent energy dispersion of electronic states around the Fermi energy (EF), which determines thermoelectric properties. In the first part of my talk, I will describe a conceptually new approach to tailor the thermal spin current in ferromagnetic tunnel contacts to SCs exploiting spin-dependent thermoelectric properties away from EF through the application of a bias voltage across the tunnel contact [9,10].

Combining superconductivity with spintronics brings in a variety of notable phenomena which do not exist in the normal state, for instance quantum coherence, superconducting exchange coupling and spin-polarized triplet supercurrents [11,12]. This nascent field of superconducting spintronics promises to realize zero-energy-dissipation spin transfer and magnetization switching. Recent equilibrium (zero-bias) studies of the Josephson effect in S/FM/S (FM: ferromagnet; S: Superconductor) junctions and the critical temperature Tc modulation in FM/S/FM and S/FM/FM' superconducting spin valves have demonstrated that engineered magnetically-inhomogeneous S/FM interfaces can generate long-range triplet pairing states which explicitly carry spin [11,12]. However, direct measurement of triplet spin transport through a singlet S has not so far been achieved. In the second part, I will describe an essentially different approach, namely, a time-dependent ferromagnetic magnetization [ferromagnetic resonance (FMR)] can drive spin-polarized transport in a singlet S via spin-triplet states induced by spin-orbit coupling [13,14].

If time permits, I will briefly outline outstanding technical issues for the realization of energy-efficient (or even dissipation-less) spintronic technologies and present my research direction of how to address these issues via topology physics [15,16].

Reference: [1] Rev. Mod. Phys. 80, 1517 (2008), [2] Rev. Mod. Phys. 76, 323 (2004), [3] Nat. Mater. 11, 400 (2012), [4] Semicond. Sci. Technol. 27, 083001 (2012), [5] Nature 462, 491 (2009), [6] Appl. Phys. Express 4, 023003 (2011), [7] Phys. Rev. Appl. 2, 034005 (2014), [8] Nature 475, 82 (2011), [9] Nat. Mater. 13, 360 (2014), [10] Phys. Rev. B 91, 155305 (2015), [11] Nat. Phys. 11, 307 (2015), [12] Rep. Prog. Phys. 78, 104501 (2015), [13] Nat. Mater. 17, 499 (2018), [14] Phys. Rev. X 10, 031020 (2020), [15] Nat. Mater. 20, 1358 (2021), [16] Under review in Nat. Nanotech. (2022).


Contact: SunYoung Choi, (

Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
302 Aug.17 (Wed), 11:00AM  E6-6 #118호  최준희 박사(Caltech IQIM, Postdoctoral Scholar)  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
301 Apr. 08 (Fri.), 4:00 PM  E6-2. 5st fl. #1501  Dr. Changyoung Kim, SEOUL NATIONAL UNIV.  Spectroscopic studies of iron-based superconductors : what have we learned?
300 May. 3 (Fri), 11:00 AM  E6-2. 2st fl. #2502  Prof. Changhee Sohn  Exotic Magnetism file
299 Sep. 4 (Tue), 02:30 PM  E6-2. 2st fl. #2502  Dr. Changmin Lee, MIT  Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
298 MAR. 26 (TUE), 0300 PM  E6-2. 2st fl. #2501  Prof. Jung Hoon Han  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
297 JAN. 7 (Mon), 03:00 PM  E6-2. 2st fl. #2501  Dr. Byoung min Kang  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
296 NOV. 23 (Fri), 03:00 PM  E6-2. 2st fl. #2501  Prof. Sang-Jin Sin  Entanglement string and Spin Liquid with Holographic duality file
295 Jun. 18 (MON), 10:00 AM  E6-2. 2nd fl. #2502  Dr. Thibault VOGT  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
294 Jan.9 (Wed.), 04:00 PM  E6-2. 2nd fl. #2501  Dr. Heung-Sik Kim  Molecular Mott state in the deficient spinel GaV4S8 file
293 2015/10/16, 4PM  E6-2. 2nd fl. #2501  Prof. Yung-Fu Chen(Solid-state Laser Physics Laboratory,National Central University)  Fluctuations of entropy production in partially masked electric circuits
292 2015/09/14, 2PM  E6-2. 2nd fl. #2501  Dr. Hae Ja Lee ( Stanford University, SLAC )  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
291 Apr. 08 (Fri.), 13:30 PM  E6-2. 1st fl. #1501  Dr. Yunkyu Bang, Chonnam National Univ.  Theoretical Overview of Iron-based superconductors and its future
290 Apr. 01 (Fri.) 4:15 PM  E6-2. 1st fl. #1501  Dr. JONG SOO LIM, KIAS  Cotunneling drag effect in Coulomb-coupled quantum dots
289 Apr. 01 (Fri.) 2:30 PM  E6-2. 1st fl. #1501  Dr. KICHEON KANG, Chonnam National University  Interference of single charged particles without a loop and dynamic nonlocality
288 2016/03/11 4 PM  E6-2. 1st fl. #1501  Dr. Tae-Hwan KIM (POSTECH)  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
287 2016/03/11 1:30 PM  E6-2. 1st fl. #1501  Dr. Kwon Park  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
286 May. 25(Wed), 4pm  E6-2. 1st fl. #1323 / Zoom  Dr. Sungwoo Hong (Enrico Fermi Institute at University of Chicago)  Uncovering New Lampposts for Dark Matter: Continuum or Conformal
285 Jun. 10 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Sanghoon Kim(Department of Physics, University of Ulsan)  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
284 Jun. 10 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Seunghun Lee(Department of Physics, Pukyong National University)  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
283 Nov. 1 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Ju-Jin Kim  Electron transport through weak-bonded contact metal with low dimensional nano-material file