visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1548

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
469 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
468 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
467 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
466 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
465 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
464 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
463 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
462 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
461 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
460 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
459 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
458 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
457 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
456 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
455 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
454 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
453 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
452 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
451 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
450 2019-10-29 14:30  #1323, E6-2  Quantum sensing file