visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-16 16:00 
일시 Nov. 16 (Wed), 4p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Heung-Sik Kim , University of Toronto 

Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators 

 

Nov. 16 (Wed), 4p.m., #1323(E6-2. 1st fl.)

Dr. Heung-Sik Kim , University of Toronto  

 

The topological Haldane model (THM) on a honeycomb lattice is a prototype of systems hosting topological phases of matter without external fields. It is the simplest model exhibiting the quantum Hall effect without Landau levels, which motivated theoretical and experimental explorations of topological insulators and superconductors. Despite its simplicity, its realization in condensed matter systems has been elusive due to a seemingly difficult condition of spinless fermions with sublattice-dependent magnetic flux terms. While there have been theoretical proposals including elaborate atomic-scale engineering, identifying candidate THM materials has not been successful, and the first experimental realization was recently made in ultracold atoms. Here we suggest that a series of Fe-based honeycomb ferromagnetic insulators, AFe2(PO4)2 (A=Ba,Cs,K,La) possess Chern bands described by the THM. While BaFe2(PO4)2 fails to exhibit quantized Hall effect due to the filling of even and odd Chern bands, we predict that compounds with A=K,Cs,La have nontrivial bulk Chern numbers with well-defined gap, thereby enabling a solid state realization of THM. 

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

 

번호 날짜 장소 제목
46 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
45 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
44 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
43 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
42 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
41 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
40 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
39 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
38 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
37 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
36 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
35 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
34 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
33 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
» 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
31 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
30 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
29 2016-06-16 16:00  #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
28 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
27 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma