visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-25 14:00 
연사  
장소 E6 Room(#2501) 

Physics Seminar

 

 

 

Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia

 

Duk-Hyun Choe

Samsung Advanced Institute of Technology

May. 25th (Wed), 14:00, E6 Room(#2501)

 

Over the past decade there has been a resurgence of interest in ferroelectric (FE) devices in the semiconductor device community. This interest was sparked by the discovery of ferroelectricity in a simple binary oxide, hafnia. Unlike conventional FE perovskite, FE hafnia exhibits ultra-scalable ferroelectricity compatible with Si electronics, providing an unprecedented opportunity for the use of FEs in advanced memory and logic devices. Many proof-of-concept devices based on FE hafnia are indeed showing some promise. However, their practical engineering is still largely relying on trial-and-error process that lacks a clear theoretical guidance, and it remains challenging to rationally design the FE devices for targeted applications. Thus, the community is now calling for more fundamental investigations on the physics of ferroelectricity in hafnia.

In this presentation, we briefly review the status of the field and provide our new understanding on FE switching and surface stability of hafnia. We will first introduce an ultralow FE switching mechanism that can enable rapid growth of the FE domains in hafnia [1]. We also establish a new class of topological domain walls in HfO2, which can help understand complex domain structures often present in FE hafnia samples. Next, we present our systematic study of surface-functionalized FE hafnia [2]. We show that their remnant polarization (Pr) and coercive field (Ec) can strongly depend on the surface treatments, providing a possible explanation for the enhancement of Pr in ultrathin hafnia with preferred orientation [3,4]. We believe our study represents an important step towards bridging the gap between practical engineering and the first-principles simulations in the field of FE hafnia.

 

[1] D.-H. Choe et al., Mater. Today 50, 8 (2021).

[2] D.-H. Choe et al., IEDM (2021).

[3] S. S. Cheema et. al., Nature 580, 478 (2020)

[4] H. Lee, D.-H. Choe, S. Jo 36499 (2021).13,  ACS Appl. Mater. Interfaces et. al.,

 

Contact: Prof. Chan-Ho Yang (chyang@kaist.ac.kr) ,

Departmentof Physics / Center for Lattice Defectronics

 

Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
145 2015-11-24 16:00    Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
144 2016-07-08 14:00    Electronic quasiparticles in the quantum dimer model
143 2016-10-18 15:00    “Hybrid quantum systems with mechanical oscillators”
142 2022-12-20 16:00    Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
141 2015-12-17 11:00    Wavefront engineering for in-vivo Deep brain imaging
140 2018-07-27 13:30    Magnetic reversal of artificial spin ice file
139 2018-07-27 13:30    Magnetic reversal of artificial spin ice file
138 2017-07-14 15:00    Chiral anomaly in disordered Weyl semimetals file
137 2024-06-12 13:30    Competition between superconductivity and density waves in spin-degenerate and spin-orbit-coupled Bernal bilayer graphene
136 2019-11-01 16:00    Electron transport through weak-bonded contact metal with low dimensional nano-material file
135 2022-11-04 16:30    초세대 협업연구실 Quantum- & Nano-Photonics_Multifunctional neural probes with integrated nanophotonics file
134 2019-09-27 14:30    Spin-charge conversion in topological insulators for spintronic applications file
133 2018-12-07 16:00    Novel probes of interacting electrons in 2D systems file
132 2018-10-19 10:00    Energy conversion processes during magnetic reconnection in a laboratory plasma file
131 2016-11-04 13:30    Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
130 2015-08-03 10:30    Axion Search
129 2016-04-01 16:15    Cotunneling drag effect in Coulomb-coupled quantum dots
128 2019-12-03 16:00    Toward Quantum Materials with Correlated Oxides file
127 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
126 2023-05-22 13:00    Design & Development of Electrochemical Biosensors for the Detection of T2DM Biomarkers