visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-10 16:00 
일시 2015/11/10, 4PM 
장소 E6-2, #1323 
연사 Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) 

“Rapid heating of matter using high power lasers

 

 Dr. Woosuk Bang

Physics division, Los Alamos National Laboratory

 

Nov. 10 (TUE), 4:00 p.m. , Seminar Room(#1323)

 

 With the development of several novel heating sources, scientists can now heat a small sample rapidly above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. On the Trident laser facility at Los Alamos National Laboratory, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils rapidly and uniformly. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. We developed a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

Using even smaller targets (~10 nm radius spheres of solid deuterium), ion temperatures exceeding 108 K have been achieved in the laboratory. We will discuss briefly about nuclear fusion experiments using high power lasers.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
166 2019-08-16 14:00  E6 Room(#1323)  Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides file
165 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
164 2023-08-29 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards string loop corrections in Calabi-Yau orientifold compactifications.
163 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
162 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
161 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
160 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
159 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
158 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
157 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
156 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
155 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
154 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
153 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
152 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
151 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
150 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
149 2023-08-24 11:00  E6, Rm#1323  Advancing magnonic metamaterials: spin waves in nanomagnetic arrays
148 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
147 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions