visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 Zoom Video 
일시 Sep. 24(Thu), 09:00~, Sep. 24(Thu), 16:00 ~ 
연사 Akash V. Dixit (University of Chicago), Dr. Boris Ivanov (Novosibirsk State Technical University) 

Speaker: Akash V. Dixit (University of Chicago)

 

Date: September 24, 2020 (Thursday)

 

Time: 9:00 AM

 

Venue: Zoom Video Conference System (Please click the link below)

 

https://kaist.zoom.us/j/6108068959?pwd=TXV2OGlWdVRtcGhmNXVTRWlla2pHQT09


Meeting ID: 610 806 8959
 

Passcode: 131015

 

Topic: Searching for Dark Matter with a Superconducting Qubit

Abstract:

The gravitational evidence for the existence of dark matter is extensive 1 , yet thus far, dark matter has evaded direct detection in terrestrial experiments. Detection mechanisms for low mass dark matter candidates such as the axion 2–5 or hidden photon 6,7 leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon 8,7. Current dark matter searches operating at microwave frequencies, use a resonant cavity to coherently accumulate the field sourced by the dark matter and use a quantum limited linear amplifier to read out the cavity signal 9–12. Here, we report the development of a novel microwave photon counting technique and use it to set a new exclusion limit on hidden photon dark matter. We constrain the kinetic mixing angle to  ≤ 1.82 × 10−15 in a narrow band around 6.011 GHz (24.86 µeV) with an integration time of 8.33 s. We operate a superconducting qubit to make repeated quantum non-demolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with performance limited by the residual population of the system. The techniques presented here will dramatically improve the sensitivity of future dark matter searches in the range of 3-30 GHz and are generally applicable to measurements that require high sensitivity to inherently low signal photon rates.

 
 

Seminar Invitation (September 24, 2020), 4 PM

 
Speaker: Dr. Boris Ivanov (Novosibirsk State Technical University)


Date: September 24, 2020 (Thursday)

Time: 4:00 PM

Venue: Webinar Video Conference System (Please click the link below)

https://webinar.kafe.or.kr

Seminar Name: Cryogenic Microwave Circuit Development at the NSTU

Password: None

 

Topic: Cryogenic Microwave Circuit Development at the NSTU

Abstract:

During the seminar I am going to show the last scientific results of 4 research performed in the Laboratory of Quantum and Cryogenic Electronics. I will concentrate the major part of the talk around cryogenic amplifiers design, development and characterization. Thus, the cryogenic low noise amplifier with the noise temperature of 6 K and gain value of more than 30 dB is shown for the frequency range from 6 to 12 GHz. Based on such microwave amplifiers the superconducting X-mon qubit structures were measured. The experiments with qubits were performed at continues microwave field and with short microwave pulses. The qubit energy spectrums were obtained and based on the AC-Stark experiment the low average photon number close to single photon mode in qubit-resonator structure was obtained. From the other side for the bolometer circuits readout and Josephson junctions measurements the low frequency cryogenic amplifiers were designed and characterized. The minimum voltage noise density corresponds to 150 pV/root(Hz) with the gain value of more than 60 dB for the presented amplifiers.

번호 일시 장소 연사 제목
공지 Sep.22 2022  E6-1 #1323    2022 가을학기 응집물리 및 광학 세미나 전체 일정
61 October 19 (Fri.), 10:00 AM  #1323, E6-2  Dr. Jongsoo Yoo  Energy conversion processes during magnetic reconnection in a laboratory plasma file
60 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
59 October 16 (Tue.), 10:00 AM  #1323, E6-2  Dr. Won-Ki Cho  Capturing protein cluster dynamics and gene expression output in live cells file
58 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
57 October 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joung-Real Ahn  Dirac electrons in a graphene quasicrystal file
56 October 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Soo Jin Kim  Engineering light absorption in an ultrathin semiconductor metafilm file
55 September 20 (Thu.), 16:00  #1323, E6-2  Prof. Joo-Hiuk Son  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
54 September 5 (Wed.), 16:00 PM  #1323, E6-2  Dr. Dirk Wulferding  Shining a light on fractional excitations file
53 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
52 June 27 (Wed.), 13:30 PM  #1323, E6-2  Dr. Jung Sik Park  Magnetic reversal of artificial spin ice file
51 June 22 (Fri.), 04:00 PM  #1323, E6-2  Dr. Daniel Sando  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
50 June 22 (Fri.), 04:00 PM  #1323, E6-2  Dr. Daniel Sando  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
49 May 311 (Thu.), 04:00 PM  #1323, E6-2  Prof. Teun-Teun Kim  Dynamic control of optical properties with gated-graphene metamaterials file
48 May 29 (Tue.), 04:00 PM  #1323, E6-2  Prof. Jae-Won Jang  Investigation on metal nanostructure/semiconductor junction and its applications file
47 May 9 (Wed.), 04:00 PM  #1323, E6-2  Prof. Jong-Soo Rhyee  Recent advances in thermoelectric bulk composites file
46 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises file
45 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
44 Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
43 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
42 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator