visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-11-03 16:00 
일시 Nov. 3 (Fri.), 4:00 PM 
장소 #1323 (1st fl., E6-2.) 
연사 Dr. SungDae Ji (Max Planck POSTECH/Hshinchu Center (MPK)) 

The seminal work of Anderson triggered a great deal of theoretical and experimental efforts to search for the novel quantum spin liquid (QSL) states in matters, and it has become one of central issues in contemporary condensed matter physics. The QSL state, a long-range quantum entangled state, is represented by a topological order and fractionalization of constituent magnetic moments. While the most QSL states have been described by deconfined spinons as an elementary excitation in frustrated magnets, Kitaev’s QSL state is exactly derived by fractionalizing the spin excitation into Majorana fermions in a two-dimensional honeycomb lattice, the so-called Kitaev lattice, with the ansatz of bond dependent Ising-like spin interaction. In the past decade, experimental realization of the fascinating Kitaev honeycomb QSL model has been eagerly pursued. In this talk, I will present the experimental evidences of fractionalized Majorana fermions in a high quality α-RuCl3 single crystal. Neutron and x-ray diffraction measurements reveal that the low-temperature crystal structure forms the perfect Ru-honeycomb lattice, which provides an ideal platform for the Kitaev honeycomb quantum spin lattice. Extensive thermodynamic and neutron spectroscopic measurements directly proved fractionalized Majorana fermion excitations as a result of thermal fractionalization of Jeff = ½ pseudospins, which is well reproduces by numerical predictions obtained from the Kitaev model.

 

20171103_지성대.pdf

번호 날짜 장소 제목
193 2022-01-18 14:00  KI bldg. 5th fl. Room B501 & Zoom  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
192 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
191 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
190 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
189 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
188 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
187 2022-03-18 11:00  Online seminar  (응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids file
186 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
185 2022-03-25 11:00  E6-1 #1323  (응집물리 세미나) Hund's metallicity in ruthenate systems file
184 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
183 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
182 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
181 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
180 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
179 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
178 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
177 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
176 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
175 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
174 2022-04-15 11:00  Online seminar  (응집물리 세미나) First-principles studies of polar oxides and their applications file