visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6 Room(#2501) 
일시 May. 25th (Wed), 14:00 
연사 Dr. Duk-Hyun Choe(Samsung Advanced Institute of Technology) 

Physics Seminar

 

 

 

Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia

 

Duk-Hyun Choe

Samsung Advanced Institute of Technology

May. 25th (Wed), 14:00, E6 Room(#2501)

 

Over the past decade there has been a resurgence of interest in ferroelectric (FE) devices in the semiconductor device community. This interest was sparked by the discovery of ferroelectricity in a simple binary oxide, hafnia. Unlike conventional FE perovskite, FE hafnia exhibits ultra-scalable ferroelectricity compatible with Si electronics, providing an unprecedented opportunity for the use of FEs in advanced memory and logic devices. Many proof-of-concept devices based on FE hafnia are indeed showing some promise. However, their practical engineering is still largely relying on trial-and-error process that lacks a clear theoretical guidance, and it remains challenging to rationally design the FE devices for targeted applications. Thus, the community is now calling for more fundamental investigations on the physics of ferroelectricity in hafnia.

In this presentation, we briefly review the status of the field and provide our new understanding on FE switching and surface stability of hafnia. We will first introduce an ultralow FE switching mechanism that can enable rapid growth of the FE domains in hafnia [1]. We also establish a new class of topological domain walls in HfO2, which can help understand complex domain structures often present in FE hafnia samples. Next, we present our systematic study of surface-functionalized FE hafnia [2]. We show that their remnant polarization (Pr) and coercive field (Ec) can strongly depend on the surface treatments, providing a possible explanation for the enhancement of Pr in ultrathin hafnia with preferred orientation [3,4]. We believe our study represents an important step towards bridging the gap between practical engineering and the first-principles simulations in the field of FE hafnia.

 

[1] D.-H. Choe et al., Mater. Today 50, 8 (2021).

[2] D.-H. Choe et al., IEDM (2021).

[3] S. S. Cheema et. al., Nature 580, 478 (2020)

[4] H. Lee, D.-H. Choe, S. Jo 36499 (2021).13,  ACS Appl. Mater. Interfaces et. al.,

 

Contact: Prof. Chan-Ho Yang (chyang@kaist.ac.kr) ,

Departmentof Physics / Center for Lattice Defectronics

 

Department of Physics, KAIST

번호 일시 장소 연사 제목
공지 Sep.22 2022  E6-1 #1323    2022 가을학기 응집물리 및 광학 세미나 전체 일정
78 October 16 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Jaewon Song  Emergent black holes and monopoles from quantum fields file
77 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
76 Thursday, July 12, 2018 at 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  Dr. Jae Hyeok Yoo (University of California, Santa Barbara, Department of Physics)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
75 July 31(Wed.)/ 16:00  E6-2, #1323  Dr. Ivan Borzenets  Features of ballistic superconducting graphene file
74 Dec. 26 (Wed.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Isaac H. Kim  Brane-like defect in 3D toric code file
73 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
72 Jan. 26th (Tue), 13:00  E6 #1501  Dr. Hyojin Jung (NIMS)  An Introduction to Cohomology groups file
71 Jul. 14th (THU), 14:15  E6 #1501 & Zoom  Dr. Hyeong Jun LEE(Institute of Natural Science, KAIST)  Hund and electronic correlations in ruthenium-based systems
70 July 27, 2018 at 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Dr. Hyejung Kim(Technische University Dresden)  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
69 Dec. 3 (Fri.), 04:00 PM  Zoom webinar  Dr. Hyejin Jang (Seoul National University)  Nonequilibrium Heat Transport in Elemental Metals Probed by an Ultrathin Magnetic Thermometer file
68 May 13 (Fri.) 4 PM  E6. #1501(1st fl.)  Dr. Hosub Jin, Dept. of Physics, UNIST  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
67 Nov. 16 (Wed), 4p.m.  #1323(E6-2. 1st fl.)  Dr. Heung-Sik Kim , University of Toronto  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
66 Jan.9 (Wed.), 04:00 PM  E6-2. 2nd fl. #2501  Dr. Heung-Sik Kim  Molecular Mott state in the deficient spinel GaV4S8 file
65 4pm, Sep. 21 (Wed.  E6-2. #2502(2nd fl.)  Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China)  Entanglement probe of two-impurity Kondo physics
64 Jun 24 (Mon) 11:00  E6-2, #1323  Dr. Henning Schomerus  Topological photonic anomalies file
63 2015/10/23, 3PM  E6-2, #5318  Dr. Helmut Soltner (Forschungszentrum Juelich)  Development of a Rogowski Coil as a new beam position monitor
62 Apr. 2 (Fri.), 04:00 PM  Online(Zoom)  Dr. Heejun Yang (KAIST)  Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
61 May 19 (Thu) 4PM  #1323(E6-2, 1st fl.)  Dr. Heedeuk Shin, POSTECH  Nonlinear/quantum optical effect in silicon nano-photonics
60 Sep. 22, 2016(Thu), 3:30 PM  #1323(E6-2, 1st fl.)  Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
59 Sep. 22, 2016(Thu), 3:30 PM  #1323(E6-2, 1st fl.)  Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model