visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-12-06 16:00 
연사 Vladimir Y. Chernyak 
장소 E6-2 #1323 

 

세미나/특강명 

Bright Squeezed Light (BSL) Spectroscopy 

with Interferometry from First Principles

연사명

Vladimir Y. Chernyak

소속기관 

및 직위

Professor,

Department of Chemistry, Wayne State University

개최 일시

Dec 6, 2024 (Fri), 4:00 PM

개최 장소

E6-2 #1323

 
Abstract: 
 We present a theoretical approach that allows understanding the quantum light spectroscopy and interpretation of experimental data from first principles and discuss the main theoretical physics concepts and tools that stand behind it. The latter include (i) Hamiltonian vs Lagrangian picture in classical and quantum mechanics, (ii) Second quantization, (iii) Feynman path integral, (iv) Reduced description and effective action, and (v) Gauge invariance and generalized effective action. The theoretical approach is based on (i) quantum dynamics in Liouville space of mixed states, (ii) Computing the optical signals directly using the many-body Green function techniques, and (iii) Describing the classical light sources/lasers via classical external polarization, rather than a classical driving field produced by the lasers.
 
 Quantum light nonlinear spectroscopic techniques are attributed to the Liouville space Feynman diagrams that label perturbative contributions to the signals, associated with different dynamical processes in a system under spectroscopic study. Due to optical nonlinearity in an auxiliary system, e.g., in a parametric down conversion (PDC) crystal light, produced by a laser shows quantum properties, despite containing a macroscopic number of photons. Quantum features of light, appearing in such spectroscopies, are attributed to loops in Feynman diagrams that describe the corresponding signals. Applications are made to nonlinear response of photosynthetic excitons and difference-frequency-generation spectroscopy.
 
Contact.  안드레이모스칼렌코 교수 (moskalenko@kaist.ac.kr)
 
번호 날짜 연사 제목
274 2019-11-07 16:00    Integrated quantum photonics with solid-state quantum emitters file
273 2019-11-05 16:00    Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
272 2019-11-01 16:00    Electron transport through weak-bonded contact metal with low dimensional nano-material file
271 2019-11-01 14:30    Squeezing the best out of 2D materials file
270 2019-10-31 10:00    Kondo meets Hubbard: Impurity physics for correlated lattices file
269 2019-10-29 16:00    Particles and Gravity via String Geometry file
268 2019-10-29 14:30    Quantum sensing file
267 2019-10-29 10:00    Unconventional Spin Transport in Quantum Materials file
266 2019-10-25 15:00    Physics Seminar file
265 2019-10-17 16:00    Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
264 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
263 2019-10-15 16:00    Moiré superlattices and graphene quasicrystal file
262 2019-09-27 16:00    0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
261 2019-09-27 14:30    Spin-charge conversion in topological insulators for spintronic applications file
260 2019-09-26 16:00    Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
259 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
258 2019-09-18 16:00    Exploring Synthetic Quantum Matter in Superconducting Circuits file
257 2019-09-10 15:00    Two-Stage Kondo Effect file
256 2019-09-10 15:00    (2+1) D Duality Web from 3D Euclidean Lattice file
255 2019-09-02 16:00    Fall 2019: Physics Colloquium file