visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-18 14:00 
일시 Jan. 18(Tue), 2pm-3pm 
장소 KI bldg. 5th fl. Room B501 & Zoom 
연사 YoungJu Jo (Stanford University) 

[Seminar]

18 Jan 2022, Tue, 2pm-3pm, KI bldg. 5th fl. Room B501

Zoom: https://kaist.zoom.us/j/89586032430

회의 ID: 895 860 324 30

 

Data-driven interrogation of biological dynamics:
from subcellular interactions to neuronal networks in vivo

 

 

YoungJu Jo

PhD Candidate in Applied Physics, Deisseroth Laboratory, Stanford University

 

 

Biological systems are nonlinear dynamical systems consisting of heterogeneous entities. Understanding the logic of the complex spatiotemporal dynamics in such systems, robustly implementing specific biological functions, may require new approaches beyond the traditional hypothesis-driven experimental designs. Here we present a data-driven approach, enabled by high-throughput experimental and computational technologies, across multiple scales. We first discuss a computational imaging technique for simultaneously visualizing multiple aspects of subcellular dynamics [1, 2], its potential combination with molecular optogenetics to study the cell signaling networks, and the remaining challenges in these systems. Then we turn to neuronal networks in behaving animals where high-dimensional neural population activity could be reliably measured and perturbed over extended time. Synergizing with recent technical advances, we propose and experimentally demonstrate a unified deep learning framework to identify the underlying neural dynamical systems, reverse-engineer the neural computation implemented by the dynamics, and design spatiotemporally patterned optogenetic stimulation for naturalistic manipulation of animal behavior [3]. Application of this framework to the mouse habenular circuitry reveals cell-type-specific reward history coding implemented by line attractor dynamics [4].

 

References:

1. Jo*, Park* et al. Science Advances 3(8), e1700606, 2017.

2. Jo*, Cho*, Park* et al. Nature Cell Biology 23, 1329–1337, 2021.

3. Jo et al. in preparation.

4. Sylwestrak*, Vesuna*, Jo* et al. in revision.

 

문의: 박용근 교수 (내선:2514)

 

 

번호 날짜 장소 제목
233 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
232 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
231 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
230 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
229 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
228 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
227 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
226 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
225 2019-05-02 16:00  #1323, E6-2  Anomalous optical properties of halide perovskites file
224 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
223 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
222 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
221 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
220 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
219 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
218 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
217 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
216 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
215 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
214 2019-03-26 15:00  E6-2. 2st fl. #2501  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file