visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
일시 Oct. 18 (Tue.), 3PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
246 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
245 2023-07-10 16:00  E6, #1323  Electronic structures of magnetic and non-magnetic ordering in d- and f-electrons systems
244 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
243 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
242 2022-07-14 15:00  E6 #1501 & Zoom  Pure two-dimensional quantum electron liquid and its phase transition
241 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
240 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
239 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
238 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
237 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
236 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
235 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
234 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
233 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
232 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
231 2021-01-28 18:00  Online Seminar  Quantum metamaterials: concept, theory, prototypes and possible applications file
230 2021-01-28 15:00  Zoom  Topological Transport of Deconfined Hedgehogs in Magnets file
229 2024-01-16 14:00  E6-2, #1323  Dimer Physics and Superconductivity in La3Ni2O7
228 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
227 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file