visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 Zoom webinar 
일시 May. 13 (Fri.), 02:30 PM 
연사 Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University) 

SRC Seminar

 

 

Topological Superconducting Spintronics Towards Zero-Power Computing Technologies

 

Dr. Kun-Rok Jeon

Department of Physics, Chung-Ang University

 

May. 13 (Fri.), 02:30 PM

https://kaist.zoom.us/j/88323922428
회의 ID: 883 2392 2428

암호: 839974

Abstract:

Semiconductor (SC) spintronics [1-4] aims to integrate memory and logic functions into a single device. Ferromagnetic tunnel contacts have emerged as a robust and technically viable method to inject spin current into a SC up to room temperature, and to detect it [3-7]. Intriguingly, it has been established that the spin current in ferromagnetic tunnel contacts can be created by thermal means (driven by a heat flow), namely Seebeck spin tunneling [8]. So far, the creation of thermal spin current relies on the spin-dependent energy dispersion of electronic states around the Fermi energy (EF), which determines thermoelectric properties. In the first part of my talk, I will describe a conceptually new approach to tailor the thermal spin current in ferromagnetic tunnel contacts to SCs exploiting spin-dependent thermoelectric properties away from EF through the application of a bias voltage across the tunnel contact [9,10].

Combining superconductivity with spintronics brings in a variety of notable phenomena which do not exist in the normal state, for instance quantum coherence, superconducting exchange coupling and spin-polarized triplet supercurrents [11,12]. This nascent field of superconducting spintronics promises to realize zero-energy-dissipation spin transfer and magnetization switching. Recent equilibrium (zero-bias) studies of the Josephson effect in S/FM/S (FM: ferromagnet; S: Superconductor) junctions and the critical temperature Tc modulation in FM/S/FM and S/FM/FM' superconducting spin valves have demonstrated that engineered magnetically-inhomogeneous S/FM interfaces can generate long-range triplet pairing states which explicitly carry spin [11,12]. However, direct measurement of triplet spin transport through a singlet S has not so far been achieved. In the second part, I will describe an essentially different approach, namely, a time-dependent ferromagnetic magnetization [ferromagnetic resonance (FMR)] can drive spin-polarized transport in a singlet S via spin-triplet states induced by spin-orbit coupling [13,14].

If time permits, I will briefly outline outstanding technical issues for the realization of energy-efficient (or even dissipation-less) spintronic technologies and present my research direction of how to address these issues via topology physics [15,16].

Reference: [1] Rev. Mod. Phys. 80, 1517 (2008), [2] Rev. Mod. Phys. 76, 323 (2004), [3] Nat. Mater. 11, 400 (2012), [4] Semicond. Sci. Technol. 27, 083001 (2012), [5] Nature 462, 491 (2009), [6] Appl. Phys. Express 4, 023003 (2011), [7] Phys. Rev. Appl. 2, 034005 (2014), [8] Nature 475, 82 (2011), [9] Nat. Mater. 13, 360 (2014), [10] Phys. Rev. B 91, 155305 (2015), [11] Nat. Phys. 11, 307 (2015), [12] Rep. Prog. Phys. 78, 104501 (2015), [13] Nat. Mater. 17, 499 (2018), [14] Phys. Rev. X 10, 031020 (2020), [15] Nat. Mater. 20, 1358 (2021), [16] Under review in Nat. Nanotech. (2022).

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
142 DEC. 27 (Thu), 04:00 PM  E6-2. 1st fl. #1323  Prof. Na Young Kim  Quantum Innovation (QuIN) Laboratory file
141 Dec. 26 (Wed.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Isaac H. Kim  Brane-like defect in 3D toric code file
140 DEC. 16~18 (Sun~Tue)  E6-2. 1st fl. #1323  Prof. Keisuke Totsuka  Lectures on 2d Conformal Field Theory file
139 DEC. 11 (Tue), 04:00 PM  E6-2. 1st fl. #1323  Prof. Hiroshi Shinaoka  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
138 Dec. 7 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Joon Ho Jang  Novel probes of interacting electrons in 2D systems file
137 Dec. 7 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Gyung Min Choi  Spin generation from heat and light in metals file
136 Nov. 9 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Donghun Lee  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
135 Nov. 9 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Pilkyung Moon  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
134 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
133 Oct. 12 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Daniel Kyungdeock Park  Quantum Advantage in Learning Parity with Noise file
132 Jun. 01 (Fri.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung Sae Hong  Topological phases in low-dimensional quantum materials file
131 May. 17 (Thu.), 01:30 PM  E6-2. 1st fl. #1323  Prof. Yong-Baek Kim University of Toronto  Quantum Spin Liquid in Kitaev Materials file
130 May. 11 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Nam Kim  암페어 단위 재정의와 단전자 펌프 소자 개발 file
129 May. 11 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Kun Woo Kim  Disordered Floquet topological insulators file
128 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
127 Mar. 16 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. JinHee Kim  산화물 다층박막에서의 다양한 물리현상 file
126 Mar. 16 (Fri.), 04:0 PM  E6-2. 1st fl. #1323  Dr. YoungDuck Kim  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
125 Sep. 22 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. GilHo Lee / Department of Physics, POSTECH  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
124 Sep. 22 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. GilHo Lee / Department of Physics, POSTECH  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
123 Sep. 22 (Fri.), 01:00 PM  E6-2. 1st fl. #1323  Dr. EunSeong Kim / Department of Physics, KAIST  Superconductor-metal-insulator transition in thin Tantalum films file