visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
연사  
장소 E6-2(1st fl.), #1323 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
365 2023-06-08 16:00    Thermal decoupling in high-Tc cuprate superconductors
364 2019-05-31 11:00    Cavity QED with Spin Qubits file
363 2022-05-27 11:00    Current Status and Future Plans of ADMX file
362 2015-07-23 13:30    Enhanced ZnO based UV photonics and related applications file
361 2020-10-15 16:00    Graphene-based Josephson junction microwave bolometer file
360 2022-06-03 11:00    (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
359 2025-06-26 16:00  Prof. Eun-Ah Kim (Cornell)  Attention to Quantum Complexity file
358 2023-03-27 15:00    A coherent mechanical oscillator pumped by a suspended quantum dot file
357 2022-09-21 16:00    Materials and Device Nanofabrication of Optical Metasurfaces file
356 2023-11-01 16:00    [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
355 2019-02-21 16:00    B-meson charged current anomalies - Theoretical status file
354 2023-03-30 16:00    Detecting axions with chiral magnetic effects file
353 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
352 2016-03-07 16:00    Physics Colloquium : 2016 Spring file
351 2023-11-15 16:00    Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
350 2022-10-04 16:00    Distinguishing 6d (1, 0) SCFTs
349 2015-03-04 12:00    Bioimaging and Biosensing Using Near-Infrared Fluorescence file
348 2019-05-03 11:00    Exotic Magnetism file
347 2014-12-22 14:00    Dynamics of molecular motors: Power stroke vs Brownian ratchet file
346 2019-05-30 16:00    Tuning the excitonic properties of semiconductors with light-matter interactions file