visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Oct. 18 (Tue.), 3PM 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
259 Apr. 08 (Fri.), 4:00 PM  E6-2. 5st fl. #1501  Dr. Changyoung Kim, SEOUL NATIONAL UNIV.  Spectroscopic studies of iron-based superconductors : what have we learned?
258 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
257 Apr. 12 (Tue.), 4 PM  E6-2. 1st fl. #1323  Dr. Jeehoon Kim, POSTECH  Confinement of Superconducting Vortices in Magnetic Force Microscopy
256 Apr. 19 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWoo Nam  A family of finite-temperature electronic phase transitions in graphene multilayers file
255 Apr. 19 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Seok Kyun Son  Graphene and hBN heterostructures file
254 Apr. 19(Mon) 19:00  Zoom webinar  Chia-Ling Chien (Johns Hopkins, USA)  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
253 Apr. 19(Tue.), 2PM  #1323(E6-2. 1st fl.)  Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
252 Apr. 2 (Fri.), 02:30 PM  Online(Zoom)  Dr. Tae Hyun Kim (SNU)  Quantum computing and entanglement generation using trapped ions and photons
251 Apr. 2 (Fri.), 04:00 PM  Online(Zoom)  Dr. Heejun Yang (KAIST)  Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
250 Apr. 27, 2017 (Thu) 4:00 pm  Seminar Room(#1323, E6-2)  Prof.Donghan Lee (Chungnam National Univ.)  반도체 양자점을 이용한 단광자 광원
249 Apr. 28 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. JeongYoung Park Graduate School of EEWS, KAIST  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
248 Apr. 28 (Fri.), 04:00 PM  #1323 (E6-2. 1st fl.)  Dr. Minkyung Jung Research Institute, DGIST  Carbon nanotubes coupled to superconducting impedance matching circuits
247 Apr. 28 (Thu.) 3PM  #2501(E6-2. 2nd fl.)  Dr. Chang Hee Sohn, SEOUL NATIONAL UNIVERSITY  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
246 Apr. 5 (Tue.), 4PM  E6-2. 1st fl. #1322  Dr. Ara Go, Columbia University  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
245 Apr. 9 (Fri.), 10:00 AM  Zoom webinar  Prof. Marko Loncar (Harvard University, USA)  Integrated Lithium Niobate Photonics file
244 Apr.19 (Fri.), 11:00 AM  #1323, E6-2  Dr. Ji-Sang Park  First-principles studies of semiconductors for solar cell applications file
243 April 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joo-Hyoung Lee, GIST  Massive screening for cathode active materials using deep neural network file
242 April 11 (Wed), 1:30pm  #1323 (E6-2, 1st fl.)  Dr. Yongsoo Yang  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
241 April 11 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Young-Sik Ra  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
240 April 13 (Fri.), 10am  #1323 (E6-2, 1st fl.)  Dr. Sungkun Hong  Quantum meets Mechanics: from Quantum Information to Fundamental Research file