visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:1597

날짜 2016-09-29 16:00 
일시 Sep. 29th(Thu), 4PM 
장소 E6-2 #1323 (1st floor) 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 날짜 장소 제목
327 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
326 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
325 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
324 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
323 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
322 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
321 2018-02-12 15:00  #C303, (Creation Hall 3F, KAIST Munji Campus)  The recent result of XMASS Experiment
320 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
319 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
318 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
317 2021-02-15 17:00  Zoom  Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
316 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
315 2021-02-17 09:00  Online  석학 대중 강연 및 강의 시리즈 file
314 2020-02-12 13:00  E6-2, #5318  From inflation to new weak-scale file
313 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
312 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
311 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
310 2022-01-12 11:00  Zoom and E6 #1323  Spectroscopic study of trapped ions towards probing dark matter and new physics file
309 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
308 2024-01-24 15:00  E6-2 #1323  Determination of single molecule loading rate during mechanotransduction file