visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Non-reciprocal phase transitions

2022.03.28 11:35

admin 조회 수:536

날짜 2022-03-29 10:00 
일시 10AM, 29th Mar. / 13:30 PM, 30th Mar. 
장소 E6 #1501/zoom, E6 #2502/zoom 
연사 Dr. RYO HANAI (APCTP) 
Title: Non-reciprocal phase transitions
presenter Dr. RYO HANAI (APCTP) 
Date: 10AM, 29th Mar. E6 #1501/zoom
        13:30 PM, 30th Mar. E6 #2502/zoom  
 

https://us02web.zoom.us/j/87623324709?pwd=TElFeTZZT2xCZnZ1azV5OEg4N1BjUT09

회의 ID: 876 2332 4709

암호: 125958

 
abstract

Phase transitions are ubiquitous in nature. For equilibrium cases, the celebrated Landau theory has provided great success in describing these phenomena on general grounds. Even for nonequilibrium transitions such as optical bistability, flocking transition, and directed percolation, one can often define Landau’s free energy in a phenomenological way to successfully describe the transition at a meanfield level. In such cases, the nonequilibrium effect is present only through the noise-activated spatial-temporal fluctuations that break the fluctuation-dissipation theorem. Here, by generalizing the Ginzburg-Landau theory to be applicable to driven systems, we introduce a novel class of nonequilibrium phase transitions [1-2] and critical phenomena [3] that does not fall into this class. Remarkably, the discovered phase transition is controlled by spectral singularity called the exceptional points that can only occur by breaking the detailed balance and therefore has no equilibrium counterparts. The emergent collective phenomena range from active time (quasi)crystals to exceptional point enforced pattern formation, hysteresis, to anomalous critical phenomena that exhibit anomalously large phase fluctuations (that diverge at d≤4) and enhanced many-body effects (that become relevant at d<8) [3]. The inherent ingredient to these is the non-reciprocal coupling between the collective modes that arise due to the drive and dissipation.

[1]  M. Fruchart*, R. Hanai*, P. B. Littlewood, and V. Vitelli, Non-reciprocal phase transitions. Nature 592, 363 (2021).

[2]  R. Hanai, A. Edelman, Y. Ohashi, and P. B. Littlewood, Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122, 185301 (2019).

[3]  R. Hanai and P. B. Littlewood, Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).
 
번호 날짜 장소 제목
524 2017-07-10 16:00  Jul. 10th (Mon), 4pm  “Intertwined Orders in a Heavy-fermion metal” file
523 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
522 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
521 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
» 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
519 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
518 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
517 2023-04-04 16:00  Room 2501, KAIST Natural Sciences Lecture Hall(E6)  Chiral Magnetism: A Geometric Perspective
516 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
515 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
514 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
513 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
512 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
511 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
510 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
509 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
508 2011-05-16 16:00  E6, 1501  Photonics with surface plasmon polaritons
507 2011-09-03 16:00  E6, 1501  Physics Colloquium : 2011 Fall file
506 2012-02-13 16:00  E6, 1501  Physics Colloquium : 2012 Spring
505 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4